
DEPARTMENT OF MATHEMATICS

MATH2301 Assignment 5 Solutions Semester 1, 2010

(1) We need to check all 10 axioms of a vector space.

1. ∀x, y ∈ V , by definition
x+̂y = x + y + a ∈ V.

2. ∀x ∈ V and k ∈ R,
k·̂x = k · x + (k − 1) · a ∈ V.

3.

x+̂y = x + y + a,

y+̂x = y + x + a = x + y + a

since the operation + is commutative on V . Hence

x+̂y = y+̂x.

4.

x+̂(y+̂z) = x+̂(y + z + a) = x + y + z + a + a = x + y + z + 2a,

(x+̂y)+̂z = (x + y + a)+̂z = x + y + a + z + a = x + y + z + 2a.

In the first line we have used the fact that + is associative on V , and in the second
line we have used the fact that + is associative and commutative on V . Hence

x+̂(y+̂z) = (x+̂y)+̂z.

5. For there to be a zero vector, say h, we must have

x+̂h = x = h+̂x.

By definition, this would mean that x+h+a = x = h+x+a. Since we can use the
cancellation law with +, along with commutativity and associativity, this can be
true if h + a = 0 or h = −a. We take this to be the zero vector under the addition
+̂.

6. For any w ∈ V , we need to find a vector g ∈ V such that

w+̂g = −a = g+̂w.

By definition, this means

w + g + a = −a = g + w + a.

Once again using, commutativity, associativity and the cancellation law, the above
tells us that we require g = −w − 2a. We take the vector g = −w − 2a to be the
additive inverse of w under +̂.



7.

k·̂(l̂·x) = k·̂(l·x + (l − 1) · a)

= k·(l·x + (l − 1) · a) + (k − 1) · a
= (kl)·x + k · ((l − 1) · a) + (k − 1) · a
= (kl)·x + (kl − k) · a + k · a + (−a)

= (kl)·x + (kl) · a + (−k) · a + k · a + (−a)

= (kl)·x + (kl − 1) · a
= (kl)̂·x

8.

k·̂(x+̂y) = k·̂(x + y + a)

= k · (x + y + a) + (k − 1) · a
= k · x + k · y + k · a + k · a + (−a).

Also,

k·̂x = k · x + (k − 1) · a,

k·̂y = k · y + (k − 1) · a,

⇒ k·̂x+̂k·̂y = k · x + (k − 1) · a + k · y + (k − 1) · a + a

= k · x + k · y + k · a + (−a) + k · a + (−a) + a

= k · x + k · y + k · a + k · a + (−a)

= k·̂(x+̂y).

9.

(k + l)̂·x = (k + l) · x + (k + l − 1) · a,

k·̂x+̂l̂·x = k · x + (k − 1) · a + l · x + (l − 1) · a + a

= (k + l) · x + (k − 1 + l − 1 + 1) · a
= (k + l) · x + (k + l − 1) · a
= (k + l)̂·x.

10.

1̂·x = 1 · x + (1− 1) · a
= x + 0 · a = x.

Therefore V is a vector space under +̂ and ·̂.
(2) To show that Mn(F) = V s

n ⊕ V s-s
n , we need to show the following:

1. V s
n and V s-s

n are subspaces of Mn(F).

2. Every a ∈ Mn(F) can be written in the form a = b + c where b ∈ V s
n and c ∈ V s-s

n .

3. V s
n ∩ V s-s

n = {0}
To this end, consider the following.



1. To prove that V s-s
n is a subspace of Mn(F), we need V s-s

n to be closed under addition
and scalar multiplication.

Firstly, if A, B ∈ V s-s
n ,

(A + B)T = AT + BT = −A−B = −(A + B),

so V s-s
n closes under addition. For A ∈ V s-s

n , k ∈ F,

(kA)T = kAT = −kA,

so V s-s
n closes under scalar multiplication. Hence V s-s

n is a subspace.

Now let A,B ∈ V s
n . Again, using the property of the transpose (kA + lB)T =

kAT + lBT we have
(A + B)T = AT + BT = A + B

⇒ A + B ∈ V s
n ,

and
(kA)T = kAT = kA

⇒ V s
n is a subspace.

(This example was outlined in lectures.)

2. Let A ∈ V s
n ∩V s-s

n . We know the intersection of two subspaces is a subspace. So, for
k ∈ F, we then have (kA)T = kA = −kA⇒ 2kA = 0. Since F is not of characteristic
2 ⇒ A = 0 (this highlights the assumption that F is not of characteristic 2). Hence
V s

n ∩ V s-s
n = {0}.

3. Every matrix in Mn(F) can be written as the sum of a matrix in V s
n and a matrix

in V s-s
n . Note that every matrix in V s

n is of the form




a11 a12 · · · a1n

a12 a22 · · · a2n
...

. . .
...

a1n a2n · · · ann




and every matrix in V s-s
n is of the form




0 a12 · · · a1n

−a12 0 · · · a2n
...

. . .
...

−a1n −a2n · · · 0


 .

Every matrix B ∈ Mn(F) can be written in the form




b11 b12 · · · b1n

b21 b22 · · · b2n
...

. . .
...

bn1 bn2 · · · bnn


 =




b11
1
2
(b12 + b21) · · · 1

2
(b1n + bn1)

1
2
(b12 + b21) b22 · · · 1

2
(b2n + bn2)

...
. . .

...
1
2
(b1n + bn1)

1
2
(b2n + bn2) · · · bnn




+




0 1
2
(b12 − b21) · · · 1

2
(b1n − bn1)

−1
2
(b12 − b21) 0 · · · 1

2
(b2n − bn2)

...
. . .

...
−1

2
(b1n − bn1) −1

2
(b2n − bn2) · · · 0






⇒ any matrix B ∈ Mn(F) can be written in the form B = Bs+Bs−s where Bs ∈ V s
n

and Bs−s ∈ V s-s
n .

Another way would be to expand in terms of basis vectors. We would need a basis
for V s

n . Such a set in terms of the standard basis of Mn(F) is

{ eii, eij + eji ; i 6= j, i, j = 1, . . . , n }.
We could then observe that ∀B ∈ Mn(F),

B =
∑

1≤i,j≤n

bijeij

=
∑

1≤i≤n

biieii +
∑

1≤i<j≤n

(
1

2
bij +

1

2
bij +

1

2
bji − 1

2
bji

)
eij

+
∑

1≤i<j≤n

(
1

2
bji +

1

2
bji +

1

2
bij − 1

2
bij

)
eji

=
∑

1≤i≤n

biieii +
∑

1≤i<j≤n

(
1

2
bij +

1

2
bji

)
(eij + eji)

+
∑

1≤i<j≤n

(
1

2
bij − 1

2
bji

)
(eij − eji).

Hence we have written B as a linear combination of vectors in the bases of V s
n and

V s-s
n which is sufficient to prove part 3.

(3) (a) Let A = (aij), then tr(A) = 0 gives

a11 + a22 + . . . + ann = 0.

Therefore ann = −a11 − a22 − . . . − an−1 n−1, which we interpret in terms of the
standard basis of Mn(F). Let eij denote the matrix with a 1 in the ith row and jth
column and 0 everywhere else. A basis is

{eij (1 ≤ i 6= j ≤ n), eii − enn (1 ≤ i ≤ n− 1}
and therefore the dimension = (n2 − n) + (n− 1) = n2 − 1.

(b) Again, we write A = (aij). If we impose the condition AT = −A, we must have
that

aij = −aji, i 6= j,

aii = −aii.

Since aij ∈ F, which is a field not of charateristic 2, the second equation tells us that
aii = 0. Note if F was a field of characteristic 2, the aii would remain unrestricted
since in that case 2aii = 0. We then have

V s-s
n = { (aij) = A ∈ Mn(F)|aij = −aji, aii = 0 }.

In terms of the standard basis of Mn(F) (let eij denote the matrix with a 1 in the
i-j entry and 0 elsewhere), a basis of V s-s

n must be

{ eij − eji; 1 ≤ i < j ≤ n }.
Note for any matrix C ∈ Mn(F), we have (C − CT ) is skew-symmetric. The
dimension is 1

2
n(n− 1).



(c) For a vector to be palindromic, the ith entry of the vector must coincide with the
(n − i + 1)th entry. In particular when n is odd we must take care not to count
these entries twice, since the n+1

2
th entry appears in the “middle entry”. In terms

of the standard basis of Rn, we let ei deonte the vector with a 1 in the ith entry
and 0 everywhere else. A basis for the space of palindromic vectors is therefore

{ei + en−i+1, 1 ≤ i ≤
⌈n

2

⌉
}

and the dimension is therefore dn
2
e. (Here we have used the “ceiling function” dxe =

smallest integer ≥ x).

(4) (a) Applying the Gram-Schmidt process to {1, x, x2, x3} using < f, g >=

∫ 1

−1

f(t)g(t) dt

leads to the following calculation.

Set v1 = 1.

v2 = x− < x, 1 >

< 1, 1 >
1 = x−

∫ 1

−1
t dt

∫ 1

−1
dt

= x− 0

2
= x.

v3 = x2 − < x2, 1 >

< 1, 1 >
1− < x2, x >

< x, x >
x = x2 −

∫ 1

−1
t2 dt

∫ 1

−1
dt

− x

∫ 1

−1
t3 dt

∫ 1

−1
t2 dt

= x2 − 2/3

2
− x

0

2/3
= x2 − 1

3
.

v4 = x3 − < x3, 1 >

< 1, 1 >
1− < x3, x >

< x, x >
x− < x3, x2 − 1

3
>

< x2 − 1
3
, x2 − 1

3
>

(x2 − 1

3
)

= x3 −
∫ 1

−1
t3 dt

2
− x

∫ 1

−1
t4 dt

∫ 1

−1
t2 dt

− (x2 − 1

3
)

∫ 1

−1
(t5 − 1

3
t3)dt

∫ 1

−1
(t4 − 2

3
t2 + 1

9
)dt

= x3 − x
[1
5
t5]1−1

[1
3
t3]1−1

= x3 − x
2/5

2/3
= x3 − 3

5
x.

⇒ {1, x, x2 − 1
3
, x3 − 3

5
x} is an orthogonal basis.

(b)

Apply the Gram-Schmidt process to

{(
3 5

−1 1

)
,

( −1 9
5 −1

)
,

(
7 17
2 −6

)}
.

Set v1 =

(
3 5

−1 1

)
.

v2 =

( −1 9
5 −1

)
−

〈( −1 9
5 1

)
, v1

〉

〈v1, v1〉 .

Note that
〈( −1 9

5 −1

)
,

(
3 5

−1 1

)〉
= tr

((
3 −1
5 1

)( −1 9
5 −1

))
= tr

( −8 ∗
∗ 44

)
= 36.

and
〈(

3 5
−1 1

)
,

(
3 5

−1 1

)〉
= tr

((
3 −1
5 1

)(
3 5

−1 1

))
= tr

(
10 ∗
∗ 26

)
= 36.



Here the ∗ denotes the unimportant off-diagonal terms. Therefore

v2 =

( −1 9
5 −1

)
− 36

36

(
3 5

−1 1

)
=

( −4 4
6 −2

)
.

We also have

v3 =

(
7 −17
2 −6

)
−

〈(
7 −17
2 −6

)
, v1

〉

〈v1, v1〉 −

〈(
7 −17
2 −6

)
, v2

〉

〈v2, v2〉 .

Note that
〈(

7 −17
2 −6

)
,

(
3 5

−1 1

)〉
= tr

((
3 −1
5 1

) (
7 −17
2 −6

))
= tr

(
19 ∗
∗ −91

)
= −72,

〈(
7 −17
2 −6

)
,

( −4 4
6 −2

)〉
= tr

(( −4 6
4 −2

)(
7 −17
2 −6

))
= tr

( −16 ∗
∗ −56

)
= −72

and
〈( −4 4

6 −2

)
,

( −4 4
6 −2

)〉
= tr

(( −4 6
4 −2

)( −4 4
6 −2

))
= tr

(
52 ∗
∗ 20

)
= 72.

We then have

v3 =

(
7 −17
2 −6

)
− −72

36

(
3 5

−1 1

)
− −72

72

( −4 4
6 −2

)

=

(
7 −17
2 −6

)
+

(
6 10

−2 2

)
+

( −4 4
6 −2

)
=

(
9 −3
6 −6

)
.

This gives the orthogonal basis
{(

3 5
−1 1

)
,

( −4 4
6 −2

)
,

(
9 −3
6 −6

)}

(5) (a)

T

(
λ

(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

))
= T

((
λa1 + a2 λb1 + b2

λc1 + c2 λd1 + d2

))

=

(
λa1 + a2 λd1 + d2

λa1 + a2 + λd1 + d2 λb1 + b2 − λc1 − c2

)

= λ

(
a1 d1

a1 + d1 b1 − c1

)
+

(
a2 d2

a2 + d2 b2 − c2

)

= λT

(
a1 b1

c1 d1

)
+ T

(
a2 b2

c2 d2

)

⇒ T is linear.

(b) In Mm×n(F), we make the association between the standard basis β and Fmn as
eij → en(i−1)+j. The action of T on the standard basis is

T (e11) = e11 + e21

T (e12) = e22

T (e21) = −e22

T (e22) = e12 + e21



The matrix representation of T with respect to β is

[T ]β =




1 0 0 0
0 0 0 1
1 0 0 1
0 1 −1 0


 .

It is easy to verify that the characteristic polynomial is −t3(1 − t). Therefore the
eigenvalues are 0 and 1. Now we determine the corresponding eigenvectors.

For eigenvalue 0, we have




1 0 0 0
0 0 0 1
1 0 0 1
0 1 −1 0







a
b
c
d


 =




0
0
0
0




⇒ a, d = 0, b = c.

⇒ c




0
1
1
0


 is an eigenvector corresponding to eigenvalue 0 for c 6= 0.

For eigenvalue 1, we have




0 0 0 0
0 −1 0 1
1 0 −1 1
0 1 −1 −1







a
b
c
d


 =




0
0
0
0




⇒ b = d, c = 0, a = −d

⇒ d




−1
1
0
1


 is an eigenvector corresponding to eigenvalue 1 for d 6= 0.

(c) ker(T ) is the set of all A ∈ M2(R) such that T (A) = 0. This space corresponds to

eigenspace E0, so a basis is

{(
0 1
1 0

)}
.

Im(T )=span

{
T

(
1 0
0 0

)
, T

(
0 1
0 0

)
, T

(
0 0
1 0

)
, T

(
0 0
0 1

)}

= span

{(
1 0
1 0

)
,

(
0 0
1 0

)
,

(
0 0

−1 0

)
,

(
0 1
1 0

)}

⇒ a basis for Im(T ) is

{(
1 0
1 0

)
,

(
0 0
1 0

)
,

(
0 1
1 0

)}
.

The T -cyclic subspace generated by A =

(
1 0
0 0

)
:

T (A) = T

(
1 0
0 0

)
=

(
1 0
1 0

)
,

T 2(A) = T

(
1 0
1 0

)
=

(
1 0
1 −1

)
,



T 3(A) = T

(
1 0
1 −1

)
=

(
1 −1
0 −1

)
,

T 4(A) = T

(
1 −1
0 −1

)
=

(
1 −1
0 −1

)
= T

(
1 0
1 −1

)
.

A basis is given by {A, T (A), T 2(A), T 3(A)}.
The T -cyclic subspace generated by B =

(
0 1
0 0

)
:

T (B) = T

(
0 1
0 0

)
=

(
0 0
0 1

)
,

T 2(B) = T

(
0 0
0 1

)
=

(
0 1
1 0

)
,

T 3(B) = T

(
0 1
1 0

)
=

(
0 0
0 0

)
.

A basis is given by {B, T (B), T 2(B)}.
The T -cyclic subspace generated by C =

(
0 0
1 0

)
:

T (C) = T

(
0 0
1 0

)
=

(
0 0
0 −1

)
,

T 2(C) = T

(
0 0
0 −1

)
=

(
0 −1

−1 0

)
,

T 3(C) = T

(
0 −1

−1 0

)
=

(
0 0
0 0

)
.

A basis is given by {C, T (C), T 2(C)}.
The T -cyclic subspace generated by D =

(
0 0
0 1

)
:

T (D) = T

(
0 0
0 1

)
=

(
0 1
1 0

)
,

T 2(D) = T

(
0 1
1 0

)
=

(
0 0
0 0

)
,

A basis is given by {D, T (D)}.
The eigenspace E0 is the same as ker(T ) given above.

From the answer to part (b), the eigenspace E1 has basis

{( −1 1
0 1

)}


