1. Introduction to vector spaces

The Vector Space \mathbb{R}^n

Definition

If *n* is a positive integer, then an **ordered** n-**tuple** is a sequence of *n* real numbers (a_1, a_2, \ldots, a_n) . The set of all ordered *n*-tuples is called *n*-**space** and is denoted by \mathbb{R}^n .

• Two vectors $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n are called **equal** if

$$u_1 = v_1, u_2 = v_2, \ldots, u_n = v_n$$

The sum $\mathbf{u}+\mathbf{v}$ is defined by

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

Let k be any scalar, then the scalar multiple $k\mathbf{u}$ is defined by

$$k\mathbf{u} = (ku_1, ku_2, \dots, ku_n)$$

These two operations of addition and scalar multiplication are called the **standard op**-**erations** on \mathbb{R}^n .

The zero vector in \mathbb{R}^n is denoted by **0** and is defined to be the vector

$$\mathbf{0} = (0, 0, \dots, 0)$$

The **negative** (or **additive inverse**) of u is denoted by -u and is defined by

$$-\mathbf{u} = (-u_1, -u_2, \ldots, -u_n)$$

The difference of vectors in \mathbb{R}^n is defined by

$$\mathbf{v} - \mathbf{u} = \mathbf{v} + (-\mathbf{u})$$

If $\mathbf{u} = (u_1, u_2, \dots, u_n), \mathbf{v} = (v_1, v_2, \dots, v_n),$ and $\mathbf{w} = (w_1, w_2, \dots, w_n)$ are vectors in \mathbb{R}^n and k and l are scalars, then:

•
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

•
$$u + (v + w) = (u + v) + w$$

- u + 0 = 0 + u = u
- u + (-u) = 0; that is, u u = 0

•
$$k(l\mathbf{u}) = (kl)\mathbf{u}$$

• $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$

•
$$(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$$

• 1u = u

Generalized Vector Spaces

Definition

A vector space V over a field \mathbb{F} is a nonempty set on which two operations are defined addition and scalar multiplication. Addition is a rule for associating with each pair of objects u and v in V an object u + v, and scalar multiplication is a rule for associating with each scalar $k \in \mathbb{F}$ and each object u in V an object ku such that

- 1. If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u} + \mathbf{v} \in V$.
- 2. If $\mathbf{u} \in V$ and $k \in \mathbb{F}$, then $k\mathbf{u} \in V$.

3. u + v = v + u

- 4. u + (v + w) = (u + v) + w
- 5. There is an object 0 in V, called a **zero vector** for V, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} =$ **u** for all **u** in V.
- 6. For each u in V, there is an object -u in V, called the **additive inverse** of u, such that u + (-u) = -u + u = 0;

7.
$$k(l\mathbf{u}) = (kl)\mathbf{u}$$

8.
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

9. $(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$

10. 1u = u

Examples of Vector Spaces

The set of all *n*-tuples with entries in the field \mathbb{F} , denoted \mathbb{F}^n (especially note \mathbb{R}^n and \mathbb{C}^n).

The set of all $m \times n$ matrices with entries from the field \mathbb{F} , denoted $M_{m \times n}(\mathbb{F})$. Any set of real-valued functions defined on the real line $(-\infty, \infty)$.

The set of polynomials with coefficients from the field \mathbb{F} , denoted $P(\mathbb{F})$.

Counter example

Let $V = \mathbb{R}^2$ and define addition and scalar multiplication oparations as follows: If $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$, then define

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$$

and if k is any real number, then define

$$k\mathbf{u} = (ku_1, 0).$$

Some Properties of Vectors

Theorem

If $u, v, w \in V$ (a vector space) such that u + w = v + w, then u = v.

Corollary

The zero vector and the additive inverse vector (for each vector) are unique.

Theorem

Let V be a vector space over the field \mathbb{F} , $\mathbf{u} \in V$, and $k \in \mathbb{F}$. Then the following statements are true:

(a) 0u = 0

(b) k0 = 0

(C)
$$(-k)u = -(ku) = k(-u)$$

(d) If $k\mathbf{u} = 0$, then k = 0 or $\mathbf{u} = 0$.

Quiz True or false?

- (a) Every vector space contains a zero vector.
- (b) A vector space may have more than one zero vector.
- (c) In any vector space, $a\mathbf{u} = b\mathbf{u}$ implies a = b.
- (d) In any vector space, $a\mathbf{u} = a\mathbf{v}$ implies $\mathbf{u} = \mathbf{v}$.