2. Subspaces

Definition A subset W of a vector space V is called a **subspace** of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Theorem

If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions hold.

- (a) If u and v are vectors in W, then u + v is in W.
- (b) If k is any scalar and \mathbf{u} is any vector in W, then $k\mathbf{u}$ is in W.

Examples of Subspaces

- A plane through the origin of \mathbb{R}^3 forms a subspace of $\mathbb{R}^3.$
- A line through the origin of \mathbb{R}^3 is also a subspace of \mathbb{R}^3 .

• Let *n* be a positive integer, and let $P_n(\mathbb{R})$ denote the set of all functions expressible in the form

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

where a_0, \ldots, a_n are real numbers. Thus, $P_n(\mathbb{R})$ consists of the zero function together with all real polynomials of degree n or less. The set $P_n(\mathbb{R})$ is a subspace of the vector space of all realvalued functions as well as being a subspace of $P(\mathbb{R})$. • The transpose A^T of an $m \times n$ matrix A is the $n \times m$ matrix obtained from A by interchanging rows and columns. A symmetric matrix is a square matrix A such that $A^T = A$. The set of all symmetric matrices in $M_{n \times n}(\mathbb{F})$ is a subspace of $M_{n \times n}(\mathbb{F})$.

 The trace of an n×n matrix A, denoted tr(A), is the sum of the diagonal entries of A. The set of n×n matrices having trace equal to zero is a subspace of M_{n×n}(𝔅). **Operations on Vector Spaces**

- The addition of two subspaces (of the same vector space) is defined by: U + V = {u + v | u ∈ U, v ∈ V}
- The intersection ∩ of two subsets of a vector space is defined by:

$$U \cap V = \{ \mathbf{w} | \mathbf{w} \in U \text{ and } \mathbf{w} \in V \}$$

 A vector space W is called the direct sum of U and V, denoted U⊕V, if U and V are subspaces of W with U∩V = {0} and U + V = W. Theorem

Any intersection of subspaces of a vector space V is also a subspace of V.

Quiz True or false?

- (a) If V is a vector space and W is a subset of V that is also a vector space, then W is a subspace of V.
- (b) The empty set is a subspace of every vector space.
- (c) If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$.
- (d) The intersection of any two subsets of V is a subspace of V.
- (e) Any union of subspaces of a vector space V is a subspace of V.