3. Span and linear dependence

Definitions

• A vector w is called a linear combination of the vectors v_1, v_2, \ldots, v_r if it can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

where k_1, k_2, \ldots, k_r are scalars.

For a set S of vectors in a vector space V, the span of S (denoted span(S)) is the set consisting of all linear combinations of the vectors in S.

Theorem

If $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}}$ is a set of vectors in a vector space V, then:

(a) span(S) is a subspace of V.

(b) span(S) is the smallest subspace of Vthat contains $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$ and every other subspace of V that contains $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_r}$ must contain span(S).

We say that a subset S of a vector space V spans V if span(S) = V.

Example

The polynomials $1, x, x^2, \ldots, x^n$ span the vector space P_n defined previously since each polynomial **p** in P_n can be written as

 $\mathbf{p} = a_0 + a_1 x + \dots + a_n x^n$

which is a linear combination of $1, x, x^2, \ldots, x^n$. This can be denoted by writing

$$P_n = span\{1, x, x^2, \dots, x^n\}$$

Definition

If $S = \{v_1, v_2, \dots, v_r\}$ is a nonempty set of vectors, then the vector equation

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r = \mathbf{0}$$

has at least one solution, namely

$$k_1 = 0, k_2 = 0, \dots, k_r = 0$$

If this is the only solution, then *S* is called a **linearly independent** set. If there are other solutions, then *S* is called a **linearly dependent** set.

Examples

- 1. If $\mathbf{v}_1 = (2, -1, 0, 3), v_2 = (1, 2, 5, -1)$ and $v_3 = (7, -1, 5, 8)$, then the set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, since $3\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 = 0$.
- 2. The polynomials

 $\mathbf{p}_1 = 1-x, \ \mathbf{p}_2 = 5+3x-2x^2, \ \mathbf{p}_3 = 1+3x-x^2$ form a linearly dependent set in P_2 since $3\mathbf{p}_1 - \mathbf{p}_2 + 2\mathbf{p}_3 = \mathbf{0}$ 3. Consider the vectors $\mathbf{i} = (1,0,0), \mathbf{j} = (0,1,0), \mathbf{k} = (0,0,1)$ in \mathbb{R}^3 . In terms of components the vector equation

$$k_1\mathbf{i} + k_2\mathbf{j} + k_3\mathbf{k} = \mathbf{0}$$

becomes

 $k_1(1,0,0)+k_2(0,1,0)+k_3(0,0,1) = (0,0,0)$ or equivalently,

$$(k_1, k_2, k_3) = (0, 0, 0)$$

Thus the set $S = {\mathbf{i}, \mathbf{j}, \mathbf{k}}$ is linearly independent. A similar argument can be used to extend S to a linear independent set in \mathbb{R}^n . 4. In $M_{2\times 3}(\mathbb{R})$, the set

$$\left\{ \left(\begin{array}{rrrr} 1 & -3 & 2 \\ -4 & 0 & 5 \end{array} \right), \left(\begin{array}{rrrr} -3 & 7 & 4 \\ 6 & -2 & -7 \end{array} \right), \\ \left(\begin{array}{r} -2 & 3 & 11 \\ -1 & -3 & 2 \end{array} \right) \right\}$$

is linearly dependent since

$$5\begin{pmatrix} 1 & -3 & 2 \\ -4 & 0 & 5 \end{pmatrix} + 3\begin{pmatrix} -3 & 7 & 4 \\ 6 & -2 & -7 \end{pmatrix}$$
$$-2\begin{pmatrix} -2 & 3 & 11 \\ -1 & -3 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Theorem

Let S_1 and S_2 be subsets of a vector space such that $S_1 \subseteq S_2$.

- If S_1 is linearly dependent, then so is S_2 .
- IF S_2 is linearly independent, then so is S_1 .

Theorem

Let S be a linearly independent subset of a vector space V, $\mathbf{v} \in V$ and $\mathbf{v} \notin S$. Then $S \cup \{\mathbf{v}\}$ is linearly dependent iff $\mathbf{v} \in span(S)$. *Quiz* True or false?

- (a) **0** is a linear combination of any nonempty set of vectors.
- (b) If $S \subseteq V$ (vector space V), then span(S) equals the intersection of all subspaces of V that contain S.
- (c) If S is a linearly independent set, then each vector in S is a linear combination of other vectors in S.
- (d) Any set of vectors containing the zero vector is linearly dependent.