5. Inner product spaces and orthonormal bases

We only consider $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

Definition

Let V be a vector space over \mathbb{F} . We define an inner product \langle , \rangle on V to be a function that assigns a scalar $\langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{F}$ to every pair of ordered vectors $\mathbf{u}, \mathbf{v} \in V$ such that the following properties hold for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{F}$:

(a)
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

(b) $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$

(C)
$$\overline{\langle \mathbf{u}, \mathbf{v} \rangle} = \langle \mathbf{v}, \mathbf{u} \rangle$$

(d)
$$\langle \mathbf{u},\mathbf{u}
angle$$
 >0 if $\mathbf{u}
eq \mathbf{0}.$

Examples

1. $V = \mathbb{F}^n$, $\langle \mathbf{u}, \mathbf{v} \rangle \equiv \mathbf{u} \cdot \mathbf{v}$ determined by

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i \overline{v_i},$$

 $\mathbf{u} = (u_1, u_2, \dots, u_n) \text{ and } \mathbf{v} = (v_1, v_2, \dots, v_n).$

2. Define
$$\langle A, B \rangle$$
 on $M_n(\mathbb{F})$ by
 $\langle A, B \rangle = tr(B^*A).$

Theorem

Let V be an inner product space. For $x,y,z\in V$ and $c\in\mathbb{F},$ we have

(a)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

(b)
$$\langle x, cy \rangle = \overline{c} \langle x, y \rangle$$

(c)
$$\langle x, 0 \rangle = \langle 0, x \rangle = 0$$

(d)
$$\langle x, x \rangle = 0$$
 iff $x = 0$

(e) If $\langle x, y \rangle = \langle x, z \rangle \ \forall x \in V$, then y = z.

Definitions

- A vector space V over F endowed with a specific inner product is called an inner product space. If F = R then V is said to be a real inner product space, whereas if F = C we call V a complex inner product space.
- The norm (or length, or magnitude) of a vector **u** is given by $||\mathbf{u}|| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$.

- Two vectors \mathbf{u}, \mathbf{v} in an inner product space are said to be **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle =$ 0.
- If u and v are orthogonal vectors and both u and v have a magnitude of one (with respect to (,)), then u and v are said to be orthonormal.
- A set of vectors in an inner product space is called an **orthogonal set** if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has a magnitude of one is called an **orthonormal set**.

Theorem

Every non-zero finite dimensional inner product space V has an orthonormal basis.

Example: Consider the vector space \mathbb{R}^3 with the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $\mathbf{u}_1 = (1, 1, 1), \mathbf{u}_2 = (0, 1, 1), \mathbf{u}_3 = (0, 0, 1)$ into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$; then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$.

Quiz True or false?

- An inner product is a scalar-valued function on the set of ordered pairs of vectors.
- An inner product space must be over the field of real or complex numbers.
- An inner product is linear in both components.
- If x, y and z are vectors in an inner product space such that $\langle x, y \rangle = \langle x, z \rangle$, then y = z.
- If $\langle x, y \rangle = 0$ for all x in an inner product space, then y = 0.