6. Linear Transformations

Let V, W be vector spaces over a field \mathbb{F} . A function that maps V into $W, T : V \to W$, is called a **linear transformation** from V to W if for all vectors \mathbf{u} and \mathbf{v} in V and all scalars $c \in \mathbb{F}$

(a)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

(b)
$$T(c\mathbf{u}) = cT(\mathbf{u})$$

Basic Properties of Linear Transformations

Let $T: V \to W$ be a function.

(a) If T is linear, then T(0) = 0

(b) T is linear if and only if $T(a\mathbf{v} + \mathbf{w}) = aT(\mathbf{v}) + T(\mathbf{w})$ for all \mathbf{v}, \mathbf{w} in V and $a \in \mathbb{F}$.

In the special case where V = W, the linear transformation $T: V \rightarrow V$ is called a **linear operator** on V.

Examples

1. $T : \mathbb{R}^2 \to \mathbb{R}^2$ s.t. T(a,b) = (2a+b,a)

2. $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ s.t. $T(A) = A^T$

3.
$$T: P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R})$$
 s.t.
 $T(f(x)) = f'(x)$

4. $C(\mathbb{R})$ is the space of cts real valued functions on \mathbb{R} . Fix $a, b \in \mathbb{R}$ s.t. a < b. Then

$$T: C(\mathbb{R}) \to \mathbb{R} \text{ s.t. } T(f) = \int_a^b f(t) dt.$$

5. *Identity operator:* For any V, $I: V \to V$ s.t. I(x) = x

6. Zero transformation: For any V, W, $T_0: V \to W$ s.t. $T_0(x) = 0$ Kernel and Image

Definitions

Let $T: V \to W$ be a linear transformation.

The set of vectors in V that T maps into 0 is called the **kernel** of T. It is denoted by ker(T). In mathematical notation:

$$\ker(T) = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}\}\$$

The set of all vectors in W that are images under T of at least one vector in V is called the **Image** of T; it is denoted by Im(T). In mathematical notation:

 $Im(T) = \{ \mathbf{w} \in W | \mathbf{w} = T(\mathbf{v}) \text{ for some } \mathbf{v} \in V \}$

Theorem

Let $T: V \to W$ be linear. Then ker(T) and Im(T) are subspaces of V and W respectively.

Example

 $T: \mathbb{R}^3 \to \mathbb{R}^2$ s.t. T(a, b, c) = (a - b, 2c)

If $T: V \to W$ is a linear transformation and $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ forms a basis for V, then $Im(T) = span(T(\mathbf{v_1}), T(\mathbf{v_2}), \dots, T(\mathbf{v_n}))$

Rank and Nullity

Definitons If $T: U \to V$ is a linear transformation,

- the dimension of the image of T is called the **rank of** T and is denoted by rank(T),
- the dimension of the kernel is called the nullity of T and is denoted by nullity(T).

Example

Let U be a vector space of dimension n, with basis $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_n}\}$, and let $T : U \rightarrow U$ be a linear operator defined by

 $T(u_i) = u_{i+1}, i = 1, ..., n-1, T(u_n) = 0$

Find bases for ker(T) and Im(T) and determine rank(T) and nullity(T).

If $T : V \to W$ is a linear transformation from an *n*-dimensional vector space V to a vector space W, then

 $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V) = n$

Let $T: V \to W$ be linear. Then T is injective if and only if $ker(T) = \{0\}$.

Theorem

Let $T : V \to W$ be linear and dim(V) = dim(W). Then the following are equivalent:

- T is injective
- T is surjective
- $\operatorname{rank}(T) = \dim(V)$

Suppose that $\{v_1, v_2, \ldots, v_n\}$ is a basis for V. For w_1, w_2, \ldots, w_n in W there exists exactly one linear transformation $T: V \to W$ such that $T(v_i) = w_i, i = 1, 2, \ldots, n$. Corollary

Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V and let $T_1, T_2 : V \to W$ be linear s.t. $T_1(v_i) = T_2(v_i)$ for $i = 1, 2, \ldots, n$. Then $T_1 = T_2$.

Example

Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ s.t. T(a, b, c) = (a - b, 2c). Suppose $U : \mathbb{R}^3 \to \mathbb{R}^2$ is linear and $U(1, 1, 1) = (0, 2), \quad U(1, 0, -1) = (1, -2),$

U(0, -1, 1) = (1, -2).

Quiz True or false?

- If T(x + y) = T(x) + T(y) then T is linear.
- If $T: V \to W$ is linear then $T(0_V) = 0_W$.
- T is injective if and only if the only vector x satisfying T(x) = 0 is x = 0.
- Given $x_1, x_2 \in V$ and $y_1, y_2 \in W$, there exists a linear transformation $T : V \rightarrow W$ s.t. $T(x_1) = y_1$ and $T(x_2) = y_2$.