7. Matrix representation of a linear transformation

Definition

An **ordered basis** for a finite dimensional vector space V is an basis endowed with a specific order.

Examples

The following bases are called the **standard bases:**

- 1. \mathbb{R}^3 ...
- 2. *P*₃(ℝ)...
- **3**. *M*₂(ℝ)...

Definition

Let $\beta = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for a finite dimensional vector space V. For $x \in V$, let a_1, a_2, \dots, a_n be the unique scalars such that

$$x = \sum_{i=1}^{n} a_i v_i.$$

The **coordinate vector** of x relative to β is denoted $[x]_{\beta}$ and is given by

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Example

Give the coordinate vector of

$$f(x) = 3 + 2x - x^2$$

with respect to the standard basis of $P_2(\mathbb{R})$.

Let $\beta = \{v_1, v_2, \dots, v_n\}, \gamma = \{w_1, w_2, \dots, w_m\}$ be bases for vector spaces V and W respectively. For the linear transformation $T: V \to W$, we have

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i$$

for each j, $1 \leq j \leq n$. The scalars a_{ij} are unique.

Definition

The $m \times n$ matrix $A = (a_{ij})$ is called the **matrix representation** of T with respect to the bases β and γ , and we write

$$A = [T]^{\gamma}_{\beta}.$$

If V = W and $\beta = \gamma$, we simply write

$$A = [T]_{\beta}.$$

Examples

1. $T : \mathbb{R}^2 \to \mathbb{R}^3$ s.t. T(a,b) = (a + 3b, 0, 2a - 4b).

2. $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ s.t. T(f(x)) = f'(x).

Definition

Let $T, U : V \to W$ be functions associated with vector spaces V, W over the field \mathbb{F} . Define

 $T+U: V \to W$, s.t. (T+U)(x) = T(x)+U(x), $kT: V \to W$, s.t. (kT)(x) = kT(x).

Theorem

Let V and W be vector spaces over \mathbb{F} , and let $T, U : V \to W$ be linear.

- (a) For all $k \in \mathbb{F}$, kT + U is linear.
- (b) The collection of all linear transformations from V to W is a vector space, denoted $\ell(V, W)$.

Theorem

Let V and W be finite-dimensional vector spaces with ordered bases β and γ respectively. Let $T, U : V \to W$ be linear transformations. Then

(a)
$$[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$

(b)
$$[kT]^{\gamma}_{\beta} = k[T]^{\gamma}_{\beta}, \ \forall k$$

Quiz True or false? Let V and W be finite dimensional vector space with ordered bases β and γ respectively. $T, U : V \to W$ are linear.

- For any scalar k, kT + U is linear.
- $[T]^{\gamma}_{\beta} = [U]^{\gamma}_{\beta}$ implies T = U.
- If $m = \dim(V)$ and $n = \dim(W)$, then $[T]^{\gamma}_{\beta}$ is an $m \times n$ matrix.
- $\ell(V, W)$ is a vector space.