8. Isomorphisms

Definition

Let $T: V \to W$ be linear. A function $U: W \to V$ is called an **inverse** of T if $TU = I_W$ and $UT = I_V$. If T has an inverse then it is called **invertible**.

- The inverse of T is unique and denoted T^{-1}
- T is invertible iff T is bijective
- T^{-1} is linear

Example

$$T: P_1(\mathbb{R}) \to \mathbb{R}^2 \text{ s.t. } T(a+bx) = (a,a+b)$$

Lemma

Let $T: V \to W$ be linear and invertible. Then V is finite dimensional if and only if W is finite dimensional, with dim(V) =dim(W).

Theorem

Let $T: V \to W$ be linear, with finite dimensional vector spaces V and W with bases β and γ respectively. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Moreover, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}.$

Example

Let A be an $m \times n$ matrix. Let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be defined by $L_A(x) = Ax \ \forall x \in V$. We call L_A the **left multiplication transformation**.

Example

 $T: P_1(\mathbb{R}) \to \mathbb{R}^2$ s.t. T(a+bx) = (a, a+b)

Definition

Let V and W be vector spaces. We say that V is **isomorphic** to W if there is an invertible linear transformation $T: V \rightarrow W$. We call such a T an **isomorphism**.

Examples

1. $T : \mathbb{R}^4 \to P_3(\mathbb{R})$ s.t. $T(a, b, c, d) = a + bx + cx^2 + dx^3$.

2.
$$T: M_2(\mathbb{R}) \to P_3(\mathbb{R})$$

s.t. $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + bx + cx^2 + dx^3$

Theorem

Let V and W be finite dimensional vector spaces over the field \mathbb{F} . Then V is isomorphic to W if and only if dim $(V) = \dim(W)$.

Corollary

A vector space V over the field \mathbb{F} is isomorphic to \mathbb{F}^n if and only if dim(V) = n.

Theorem

Let V and W be finite dimensional vector spaces over \mathbb{F} with dimensions n and m. Let β and γ be ordered bases for V and W respectively. Then the function $\Phi : \ell(V, W) \to M_{m \times n}(\mathbb{F})$ s.t. $\Phi(T) = [T]_{\beta}^{\gamma}$ is an isomorphism.

Quiz True or false?

• T is invertible if and only if T is injective and surjective.

•
$$T: M_2(\mathbb{R}) \to P_2(\mathbb{R})$$

s.t. $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + (b+c)x + (c+d)x^2$
is invertible.

- $M_{2\times 3}(\mathbb{R})$ is isomorphic to \mathbb{R}^5 .
- $P_n(\mathbb{R})$ is isomorphic to $P_m(\mathbb{R})$ if and only if m = n.
- $T : \mathbb{R}^3 \to \mathbb{R}^3$ s.t. T(a, b, c) = (a + b, b + c, a - c) is an isomorphism.