9. Change of basis/coordinates

Theorem

Let β and β' be two ordered bases for a finite dimensional vector space V. We have:

(a) $\left[I_V \right]_{\beta}^{\beta'}$ is invertible

(b) For any
$$x \in V$$
, $[x]_{\beta'} = [I_V]_{\beta}^{\beta'}[x]_{\beta}$.

Definition

The matrix $[I_V]^{\beta'}_{\beta}$ is called a **change of coordinate matrix**. It is said to change β -coordinates into β' -coordinates.

Example

In \mathbb{R}^2 , let $\beta' = \{(1,1), (1,-1)\}$ and $\beta = \{(2,4), (3,1)\}.$

Theorem

Let V be finite dimensional and let $T \in \ell(V)$. Let β and β' be ordered bases for V. We have

$$[T]_{\beta'} = [I]_{\beta}^{\beta'} [T]_{\beta} [I]_{\beta'}^{\beta}.$$

Example

 $T \in \ell(\mathbb{R}^2)$ s.t. T(a,b) = (3a - b, a + 3b).

Corollary

Let $A \in M_n(\mathbb{F})$, and let β be an ordered basis for \mathbb{F}^n . Then $[L_A]_\beta = P^{-1}AP$, where the *j*th column of $P \in M_n(\mathbb{F})$ is the *j*th vector of β . Example

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 3 \\ 0 & -1 & 0 \end{pmatrix}, \beta = \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Definition

Let $A, B \in M_n(\mathbb{F})$. The matrix B is said to be **similar** to A if there exists an invertible matrix P such that $B = P^{-1}AP$.

Theorem

Assume the following:

 $\bullet~V$ and W are finite dimensional vector spaces

- $T: V \to W$ is linear
- $\bullet \ \beta \ {\rm and} \ \beta'$ are ordered bases for V
- γ and γ' are ordered bases for W Then we have

$$[T]^{\gamma'}_{\beta'}[I_V]^{\beta'}_{\beta} = [I_W]^{\gamma'}_{\gamma}[T]^{\gamma}_{\beta}$$

Quiz True or false?

- Every change of coordinate matrix is invertible.
- Let T be a linear operator on a finite dimensional vector space V, let β and β' be ordered bases for V and let P be the change of coordinates from β' to β . Then $[T]_{\beta} = P[T]_{\beta'}P^{-1}$.
- Let T be a linear operator on a finite dimensional vector space V. Then for any ordered bases β and γ of V, $[T]_{\beta}$ is similar to $[T]_{\gamma}$.