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1 Question 1

1.1 Question 1(a)

The function f : R→ R defined as

f(x) = e−x

is not uniformly continuous (on R).

Proof. Set ε ≡ 1 and let δ > 0 be given.

Let the sequences {xn}∞n=1, {yn}∞n=1 ⊂ R be defined as

xn ≡ log(n+ 1) and

yn ≡ log(n),

respectively. Then

|xn − yn| = log

(
n+ 1

n

)
= log

(
1 +

1

n

)
∀ n ∈ N.

Since log(1 + 1/n) → 0 as n → ∞, there exists an N ∈ N such that for each n > N we
have log(1 + 1/n) < δ and consequently

|xn − yn| < δ ∀ n > N,

but
|e−xn − e−yn| = | − n− 1 + n| = 1 ≥ ε.

Thus, f is not uniformly continuous on R.

1.2 Question 1(b)

The function f : [0,∞)→ R defined as

f(x) ≡ e−x
2

is uniformly continuous
(
on [0,∞)

)
.
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Proof. Note that the function is a continuous function that is (strictly) monotonically
decreasing to zero. It is a continuous function because it is a composition of continuous
functions. It is monotonically decreasing because:

x2 > x1 ≥ 0⇒ x22 > x21 ⇒ e−x
2
2 < e−x

2
1 .

For all x ∈ [0,∞) we have f(x) > 0 and since f is strictly monotonically decreasing we
have

lim
x→∞

f(x) = 0. (1)

Given ε > 0 we wish to show that there exists δ = δ(ε) > 0 such that if for all x, y ≥ 0
we have |x− y| < δ then

|f(x)− f(y)| < ε.

Furthermore, note that 0 < f ≤ 1 so wlog (without loss of generality) we need not con-
sider the case that ε ≥ 1 as uniform continuity follows for any δ > 0 in this case.

Note that f
(
[0,∞)

)
= (0, 1], i.e. f is surjective. One can prove surjectivity as an

application of the IVT. We know that f(0) = 1 so given y ∈ (0, 1) (1) implies there exists
an x1 > 0 such that

f(x1) <
y

2

We know the function is continuous on [0, x1] with f(0) > y > y/2 > f(x1). Consequently,
by the IVT, there exists an x0 ∈ (0, x1) such that f(x0) = y. The monotonicity property
implies it is injective. Thus f : [0,∞)→ (0, 1] is bijective.

Let 1 > ε > 0 be given. By bijectivity of f there exists a unique x0 > 0 such that
f(x0) = ε/2.

The function f is continuous on [0, x0] and therefore uniformly continuous on [0, x0] (this
result should have been proved in class). Consequently, there exists a δ∗ > 0 such that
for all x, y ∈ [0, x0] we have

|x− y| < δ∗ ⇒ |f(x)− f(y)| < ε

2
. (2)

Since f ↓ 0, for any x, y ≥ x0 the RHS of (2) is always true, so it suffices to choose δ∗.

So now consider the case that I is an interval of the form (a, b) or [a, b) or (a, b] such that
0 ≤ a < x0, b > x0 and b − a < δ∗. Then for all x, y ∈ I we have |x − y| < δ∗ and this
implies via (2) that

|f(x)− f(y)| ≤ |f(x)− f(x0)|+ |f(x0)− f(y)| < ε

2
+
ε

2
= ε

Thus having considered all possible cases we have shown that if an arbitrary interval
(x, y) ⊂ [0,∞) is such that |x− y| < δ∗ then we have that

|f(x)− f(y)| < ε.

This argument can be replicated for any ε > 0 so f is uniformly continuous on [0,∞).
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2 Question 2

We wish to show that there exists a c ∈ R such that

2

(
2 + |c|
1 + |c|

)1+|c|

= 5

Proof. Consider the function f : [0, 100]→ R defined as

f(x) ≡
(

2 + |x|
1 + |x|

)1+|x|

.

Then f is a composition of continuous functions and hence continuous itself. Moreoever,
we have

2 = f(0) <
5

2
< f(100) =

(
102

101

)101

.

Thus, by the intermediate value theorem, there exists a c ∈ (0, 100) such that

f(c) =
5

2

which is true iff.
2f(c) = 5.

3 Question 3

3.1 Question 3(a)

We want to show:
f ∈ C(R;R)⇒ |f | ∈ C(R;R)

Proof. Given x ∈ R let {xn}∞n=1 ⊂ R be a sequence such that xn → x as n → ∞, then
by the reverse triangle inequality and the continuity of f at x we have∣∣ |f(xn)| − |f(x)|

∣∣ ≤ |f(xn)− f(x)| → 0 as (n→∞).

That is
xn → x⇒ |f(xn)| → |f(x)|.

This argument is true for any x ∈ R whence we conclude |f | is continuous on R.
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3.2 Question 3(b)

The function f : R→ R given below:

f(x) ≡
{

1 x ∈ R \Q
−1 x ∈ Q

is discontinuous everywhere but |f(x)| ≡ 1 is continuous on R. We give the proof below
for reference only, that is, it is not required as part of the solution.

Proof. Constant functions are clearly continuous. We will show that f is actually discon-
tinuous everywhere. If x ∈ Q then

xn ≡ x+
π

n
∈ R \Q ∀ n ∈ N

and as n→∞ we have xn → x but

f(xn) = 1→ 1 6= −1 = f(x)

so f is discontinuous on Q. If x ∈ R \ Q then x ∈ [N,N + 1] for some unique N ∈ Z.
Given n ∈ N we can write [N,N+1] as ∪n+1

j=1 [N+ j
n+1

] =
⋃n+1

j=1 Ij and construct a sequence
of rational numbers that get arbitrarily close to x as follows:

an ≡ N +
j

n+ 1

where j is an element in {1, 2, 3, . . . , n+ 1} such that∣∣∣∣N +
j

n+ 1
− x
∣∣∣∣ = min

k∈{1,2,...,n+1}

∣∣∣∣N +
k

n+ 1
− x
∣∣∣∣ .

Then for each n ∈ N we have an ∈ Q and |an − x| → 0 as n → ∞ by the above
construction but

−1 = f(an)→ −1 6= 1 = f(x)

Thus, f is also discontinuous on R \Q, and consequently, f is discontinuous everywhere.

4 Question 4

We want to show that if f : R→ R is continuous at 0 and satisfies

f(x+ y) = f(x) + f(y) ∀ x, y ∈ R (3)

then f is continuous on all of R.

Proof. Firstly, for any x, y ∈ R, (3) implies

f(x) = f(x− y + y) = f(x− y) + f(y),
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and therefore
f(x)− f(y) = f(x− y) ∀ x, y ∈ R. (4)

In particular, for x = y we have f(0) = 0.

Now, given any x ∈ R, let {xn}∞n=1 ⊂ R be a sequence such that limn→∞(xn − x) = 0.
Then

lim
n→∞

f(xn)− f(x) = lim
n→∞

(
f(xn)− f(x)

)
= lim

n→∞
f(xn − x) via (4)

= f(0)

= 0 (by cty. of f at 0).

Therefore, we have shown given any x ∈ R, if {xn}∞n=1 is any sequence such that xn → x
then we have f(xn)→ f(x). Hence, f is continuous on R.

5 Question5

5.1 Question 5(a)

We want to show if f, g ∈ C(I;R) are uniformly continuous and bounded then fg : I → R
is uniformly continuous on I.

Proof. Since each function is bounded let M ≡ supx∈I |f(x)| and N ≡ supy∈I |g(y)|.
Without loss of generality, we can assume that M and N are not identically zero, other-
wise fg would be the zero function which is uniformly continuous on I.

Given ε > 0, the uniform continuity of f implies there exists a δf > 0 such that:

∀ x, y ∈ I : |x− y| < δf ⇒ |f(x)− f(y)| < ε

2N
(5)

and the uniform continuity of g implies there exists a δg > 0 such that

∀ x, y ∈ I : |x− y| < δg ⇒ |g(x)− g(y)| < ε

2M
. (6)

Consequently, for δ < min{δf , δg} we have that if x, y ∈ I : |x − y| < δ then both (5)
and (6) are true, which in turn implies:

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(x)g(y) + g(y)f(x)− g(y)f(y)|
≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|

< M
ε

2M
+N

ε

2N
= ε.

This argument is valid for any ε > 0, thus the product fg is uniformly continuous on
I.

5



5.2 Question 5(b)

The functions f, g ∈ C([0∞);R) given below:

f(x) ≡ x

g(x) ≡ −x.

are each uniformly continuous on [0,∞) but the product

f(x)g(x) = −x2

is not uniformly continuous on [0,∞). We give the proof below for reference only, that
is, it is not required as part of the solution.

Proof. The proof that f and g are uniformly continuous follows immediately by choosing
δ = ε in the definition of uniform continuity.

To show that the product is not uniformly continuous, fix ε = 1 and let δ > 0 be given.
Let {xn}∞n=1, {yn}∞n=1 ⊂ R be the following sequences:

xn ≡
√
n+ 1

yn ≡
√
n.

Then

|xn − yn| = |
√
n+ 1−

√
n| |
√
n+ 1 +

√
n|

|
√
n+ 1 +

√
n|

=
1√

n+ 1 +
√
n
<

1√
n
∀ n ∈ N.

Since 1/
√
n→ 0 as n→∞ there exists an N ∈ N such that

|xn − yn| <
1√
n
< δ ∀ n > N,

but
| − x2n + y2n| = | − n− 1 + n| = 1 ≥ ε.

Thus the product is not uniformly continuous on [0,∞)
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