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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

1. (i) Find the limit of the sequence as n tends to infinity
an = "V4" + 5™
(6 marks)

(ii) Let the sequence {a,} be defined recursively by a1 = 2, api1 = %(an +4) forn > 1.

(a) Show by induction on n that a, < 4 for each n and that {a,} is monotone
increasing sequence.

(b) Show that this sequence converges and find its limit.

(9 marks)

Question 1 continued next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

1. (Working space continued)

Question 2 see next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

2. (i) Consider a sequence of functions f, : [a, )] = R. Explain what is meant by
each of the statements:

(a) fn converges to f pointwise on [a, b].
(b) fn converges uniformly to f on [a, b].

(6 marks)

(ii) Determine whether the following sequences converge. Are they also uniformly
convergent? (justify your answer):

sinnz
(a)

n R;
n

(b)

0, 1|.
n:z:+1on[‘ ]

(9 marks)

Question 2 continued on next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

2. (Continued working page only)

Question 3 see next page

TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

3. (i) State the intermediate value theorem for continuous functions.

(3 marks)

(ii) Let f : [1,2] — [0, 3] be a continuous function satisfying f(1) = 0 and
f(2) = 3. Show that there exists a point zo € [1, 2] such that f(zo) = zo.

(7 marks)

Question 3 continued next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

3. (Continued working page only)

Question 4 see next page

TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

4. (i) Do the following limits exist? (Explain your answers.)
22y 4+ 222

a im —_—,
(8) (2,9,2)—=(0,0,0) 2 + y2 + 22

4 _ 4
b) lim Y
(y)—(22) T—Y
(7 marks)
(ii) Consider a function f : R* — R™. Explain what is meant by each of the
statements:
(a) f is continuous at zy € R";
(b) f is differentiable at zq € R™.
(3 marks)

Question 4 continued next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

4. (Continued working page only)

Question 5 see next page

TURN OVER



10

MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

5. (a) State the inverse function theorem.
(3 marks)
(b) Let f(z, y) = (zy + yz, 23y + 2y°).

Show that f, in an open set containing (1, 1), has an inverse f~! defined in an
open set containing (2, 3). Find the Jacobian matrix of f~1 at (2, 3).

(7 marks)

Question 5 continued next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

5. (Continued working page only)

Question 6 see next page

TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

6. (a) Calculate the Jacobian determinant of the transformation from spherical to
rectangular coordinates given by

(z,y, 2) =T(r, ¢, 8) = (rsinpcosh, rsinpsinb, r cosp).

(4 marks)

valuate z dz dy dz, where V' is the octant of the unit ball defined by
b) Eval dz dy dz, where V is th f th ball defined b
v

24+9y2+22<1, >0, y>0, z>0.

(7 marks)

Question 6 continued next page TURN OVER
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MATH2400 — MATHEMATICAL ANALYSIS
First Semester Examination, June, 2003 (continued)

6. (Continued working page only)
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