\[(i) \lim_{n \to \infty} x^{2n} = 0 \quad (0 \leq x < 1) \]
\[\lim_{n \to \infty} n^2 = 1 \]
\[\implies f = \begin{cases} 0 & 0 \leq x < 1 \\ 1 & x = 1 \end{cases} \]

on a closed, bounded interval.

(ii) No. If it were, the limit \(f^* \) would have to be continuous (uniform limit of continuous functions is continuous), which it isn't.

(iii) \(\log x \in C_{[0,1]} \) & \(f_n \to f \) on \([0,1] \), so \(f_n \to f \) on \([0,1] \).

(iv) See last page.

2) \(f \in C_{[0,1]} \). By Rolle's theorem, if \(f \) has 2 distinct roots \(a \) & \(b \) in \([0,1] \) with \(0 < a < b < 1 \), then \(\exists c \in (a,b) \) (so \(c \in (0,1) \)) with \(f'(c) = 0 \) (\(f(b) = f(a) \)). But \(f'(c) = 3x^2 - 3 = 3(x^2 - 1) \) is strictly negative on \((0,1)\), which is a contradiction.

3) \(\frac{-1}{n^2} \leq \frac{(\sin x)^n}{n^2} \leq \frac{1}{n^2} \)

So \(0 \leq \frac{1}{n^2} (\sin x)^n \leq \frac{1}{n^2} \). Since \(\sum \frac{1}{n^2} \) converges \((p - \text{series}, p > 1) \), \(\frac{1}{n^2} (\sin x)^n \) converges, absolutely meaning that \(\sum \frac{(\sin x)^n}{n^2} \) converges absolutely.

(iii) \(f(x) = \frac{1}{\log x} \) is monotone decreasing & positive on \([3, \infty) \), with \(\lim_{x \to \infty} \frac{1}{\log x} = 0 \). So by the integral test, \(\sum \frac{1}{\log x} \) converges \(\iff \int_3^\infty \frac{dx}{\log x} \) converges. Put \(y = \log x \), \(dy = \frac{1}{x} dx \)

\[\int_3^\infty \frac{dy}{y} = -\log y \bigg|_3^\infty = -\infty \] So series diverges. (only positive terms, so it can't be conditionally convergent.)
(iii) Analogous to (ii), as $n \to \infty$, $\frac{1}{\sqrt{n}}$ is monotone decreasing to 0 (as $n \to \infty$).

\[\int \frac{dy}{y\sqrt{y}} = \log y + \sqrt{y} + C \]

which converges, so the series converges absolutely.

(iv) $0 < \frac{1}{n^2 \log n} < \frac{1}{n^2}$ for $n \geq 3$.

So, $\sum \frac{1}{n^2 \log n}$ converges absolutely since $\sum \frac{1}{n^2}$.

by the comparison test.

5. (ii) $f^{(n)}(x) = \sinh n \pi x$ even $\Rightarrow f^{(n)}(0) = 0$ even

$cosh x$ n odd $\Rightarrow 1 \text{ n odd}$

\Rightarrow MacLaurin write in $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$

$= \sum \frac{x^{2n+1}}{(2n+1)!}$

$x + \frac{x^3}{3!} = \phi_3 = \phi_4$, so the error can be written as $f^{(5)}(\theta)$ for some $\theta \in (0, x)$, so such

\[\text{for some } \theta \in (0, x), \text{ the error is given by } 5 \frac{\cosh \frac{\theta}{5}}{5!} \leq \theta \frac{25 \cdot 5!}{25!} \approx 0.00029. \]

5. (iii) For $f(x, y, z) = \frac{\beta y + x^2}{\beta y + y^2}$, $A(x, y, z) = (x, \hat{\beta}, 0)$ with $\beta > 0$ we have $f(x, \hat{\beta}, 0) = \frac{\beta}{\beta y + y^2} \Rightarrow \lim_{(x, \hat{\beta}, 0) \to 0} f(x, \hat{\beta}, 0)$ depends on $\hat{\beta}$ (e.g., $x = \hat{\beta} = 1$, limit = $\frac{\beta}{\beta}$; $x = \hat{\beta} = 0$, limit = 0), so $(x, \hat{\beta}, 0)$ doesn't exist.
5) Put \(F(x, y) = \frac{x^4 - y^4}{x - y} \). Since \(F(x, y) \) is undefined for \(x = y \), \(F \) is not defined on any deleted neighborhood \(\mathbb{R} \setminus \{0, 2\} \), so the limit is not defined, according to our definition. However, full marks were given for noting that for \(x \neq y \), \(F(x, y) = (x+y)(x^3 + x^2y + xy^2 + y^3) \)

\[
\lim_{{(x, y) \to (0, 0)}} F(x, y) = \lim_{{(x, y) \to (0, 2)}} (8 + 8 + 8 + 8) = 32
\]

6) (i) \(J_F = \begin{pmatrix} 6x^5 & -6y^5 \\ y & x \end{pmatrix} \) \(\text{det } J_F = 6(x^6 + y^6) \)

(ii) \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) is \(C^1 \), with \(\text{det } J_F \neq 0 \) for \((x, y) \neq (0, 0)\).

(iii) \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) has a local inverse near any \((x, y) \neq (0, 0)\).

(iv) \(F(1, 0) = (1, 0) \neq (-1, 0) \Rightarrow F \) is not globally invertible.

4) In order to show uniform convergence:

Given \(\varepsilon > 0 \), need \(N \in \mathbb{N} \) s.t.

\[m > N \Rightarrow |f_n(x) - f(x)| < \varepsilon \quad \forall x \in E_0, \rho, \]

i.e. \(n > N \Rightarrow 2^n < \varepsilon \quad \forall x \in E_0, \rho \).

So choose \(N \) s.t. \(2^N < \varepsilon \) (possibly, since \(x \mapsto 2^x \) is a decreasing function) \(N \). For \(n > N \), there holds: \(0 \leq \frac{2^n}{\rho} < \frac{2^n}{\rho^2} < \varepsilon \Rightarrow \) \(\star \).