
MATH3302

Coding and Cryptography

Coding Theory

2010

Contents

1 Introduction to coding theory 2
1.1 Introduction . 2
1.2 Basic definitions and assumptions . 3
1.3 Introduction to error detection . 5
1.4 Information rate of a code . 6
1.5 Introduction to error correction . 7
1.6 Weights and distances . 8
1.7 Maximum Likelihood Decoding . 9
1.8 Error detection and correction . 12

2 Linear codes I 17
2.1 Introduction to linear codes . 17
2.2 Dual codes . 18
2.3 Bases for codes . 19
2.4 Generating matrices . 22
2.5 Equivalent codes . 24
2.6 Parity Check Matrices . 26
2.7 Distance of a linear code . 30
2.8 Cosets . 30
2.9 MLD for Linear Codes . 32
2.10 Reliability of IMLD for linear codes . 36
2.11 Encoding and decoding summary . 38

3 Linear codes II 39
3.1 Some bounds for codes . 39
3.2 Perfect codes . 43
3.3 Extended codes . 44
3.4 The (a | a+ b) construction . 47
3.5 Hamming codes . 48
3.6 Reed-Muller codes . 50
3.7 Decoding of first-order Reed Muller codes . 53
3.8 The Extended Golay Code . 55
3.9 Decoding the Extended Golay Code . 58
3.10 The Golay Code, C23 . 61

4 Cyclic Codes 68
4.1 Introduction to burst errors . 68
4.2 Polynomials over K and words of Kn . 69
4.3 Introduction to cyclic codes . 70
4.4 Generating matrices for linear cyclic codes . 73
4.5 Finding a generator polynomial for a linear cyclic code 76
4.6 Error detection and correction using cyclic codes . 78
4.7 Another parity check matrix for a linear cyclic code . 83
4.8 Interleaving . 84

1

1 Introduction to coding theory

1.1 Introduction

Coding theory is the study of methods for efficient and accurate transfer of information from one place
to another. It is different to cryptography: we are no longer interested in secrecy, just accuracy and
efficiency.

Coding theory has many uses: minimising noise on CD players, data transfer on phone lines or the
internet, ethernet connections, data transfer from memory to CPU in a computer and space commu-
nication.

When transfering information from one place to another the information passes through a channel.
The channel is the physical medium through which the information is transferred, for example the
atmosphere or a phone line. Errors in the transferred information occur due to noise on the channel,
that is, undesirable disturbances which may cause information received to differ from information
transmitted. Noise can be caused by many things, for example, sunspots, lightning, poor typing, poor
hearing.

Coding theory deals with the problem of detecting and correcting transmission errors caused by noise
on the channel. The primary goals are to provide:

1. fast encoding of information;

2. easy transmission of encoded messages;

3. fast decoding of received message;

4. detection and correction of errors introduced in the channel;

5. maximum transfer of information per unit time.

These goals are not necessarily compatible! Goal 4 is where we will spend most of our discussion.

Example 1.1 Consider normal conversation (codewords are english words, channel is atmosphere,
encoder is speech, decoder is hearing). We have in-built error correction: if you received the message
“apt natural, i have a gub”, you would probably know what is meant. You can use the redundancy
inherent in the message to infer its meaning.

Redundancy is a fundamental component of coding theory. We will be adding extra bits of information
to each word before transmission in order to (hopefully) allow the effect of noise to be countered, and
the correct word to be inferred. The challenge is to add as little extra information as possible, while
still achieving the desired level of error detection and correction.

Example 1.2 A 3-fold repetition code: Suppose we have four message words: 00, 01, 10, 11, and we
encode them by repeating them three times to get the four codewords 000000, 010101, 101010, 111111.
After transmission, when we receive a word of length 6 we apply the decoding process of choosing the
codeword which is closest to the received word. This system allows the detection of an error in up to
two positions and the correction of an error in one position.

2

Summary of information transmission process:

Message
word

encoding
−→ Codeword

transmit
over
−→

noisy
channel

Received
word

error
detection
−→
and

correction

Codeword

recover
message
−→

Message
word

Example 1.3 The ISBN code: Every recent book should have an International Standard Book Num-
ber (ISBN). This is a 10-digit codeword x1x2x3x4x5x6x7x8x9x10 assigned by the publisher. The first
digit indicates the language (0 for English) and the second and third digits indicate the publisher (for
example, 19 stands for Oxford University Press). The next 6 digits are the book number assigned by
the publisher. The final digit is a check digit, and is chosen so that the sum

10∑
i=1

ixi

is divisible by 11. (Note that the symbol X is used for the final digit to represent the number 10.)
This system allows the detection of two types of errors: a single incorrect digit, and the transposition
of two digits.

1.2 Basic definitions and assumptions

Definition 1.4 A q-ary code is a set of sequences of symbols where each symbol is chosen from a set
of q distinct elements. The set of q distinct elements is called the alphabet. A sequence of symbols is
called a word and a word that occurs in the code is called a codeword. The length of a word is the
number of symbols in the word. A code in which each codeword has the same length, n say, is called
a block code of length n. The number of codewords in a code C is denoted by |C|.

Example 1.5 The ISBN code is an 11-ary block code of length 10 based on the alphabet
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X}.

Definition 1.6 2-ary codes are called binary codes, and are usually based on the alphabet {0, 1}. In
this course, we focus on binary block codes, so the word code will refer to a binary block code unless
otherwise indicated.

Definition 1.7 A binary codeword is transmitted by sending its digits, one at a time and in order,
across a binary channel. A binary channel is symmetric if 0 and 1 are transmitted with equal accuracy;
that is, the probability of receiving the correct digit is independent of whether the digit transmitted
was 0 or 1. The reliability of a binary symmetric channel (BSC) is a real number 0 ≤ p ≤ 1, where p
is the probability that the digit sent is the digit received. The channel is perfect if p = 1.

3

We need to make a number of assumptions about the binary channel.

• We assume that any codeword of length n containing 0s and 1s will be received as a word of
length n containing 0s and 1s, although not necessarily the same as the original codeword. We
also assume that it is easy to identify the beginning of the first word received, and hence that
we can identify each received word.

• We assume that noise on a channel is scattered randomly, rather than in bursts. Thus, the
probability of any one digit being altered by noise is equal to the probability of any other digit
being altered. (This is perhaps not reasonable, but we will relax this later on.)

• We assume that no channel is perfect.

• If p is the probability that the digit received is the same as that sent, then 1−p is the probability
that the digit received is not the same as the digit sent. If any channel has p < 0.5, this can be
converted to a channel with 0.5 ≤ p ≤ 1 (by inverting each digit), so we will assume that we are
communicating via a symmetric binary channel with 0.5 ≤ p < 1.

Definition 1.8 Let v be the codeword of length n transmitted, w be the word received and assume
communication is over a BSC with reliability p and with randomly scattered noise. Let Φp(v, w) be
the probability that if v is transmitted then w is received. If v and w disagree in d positions then we
have

Φp(v, w) = pn−d(1− p)d.

Exercise 1.9 Let C be a code of length 6, and suppose that we are transmitting codewords over a
BSC with reliability p = 0.95 and with randomly scattered noise.

1. For any codeword v ∈ C, what is the probability that v is received correctly?

2. Let v = 101010 ∈ C and x = 001010. What is Φp(v, x)?

3. Let v = 101010 ∈ C and w = 011010. What is Φp(v, w)?

4. For any codeword v ∈ C, what is the probability that a word is received which differs from v in
one position (so one error has occurred)?

5. For any codeword v ∈ C, what is the probability that a word is received which differs from v in
two positions (so two errors have occurred)?

6. For any codeword v ∈ C, what is the probability that a word is received which differs from v in
two or more positions?

If the reliability of the channel was only p = 0.51, then the answers to questions 1 – 3 above would
be 0.0176, 0.0169 and 0.0162, respectively. It is vital to have a reliable channel in order to have any
chance of receiving transmitted information correctly. In practice, channel reliability is usually higher
than 0.95.

4

1.3 Introduction to error detection

Suppose a word is received, and this word is not a codeword. Then we have detected that at least one
error has occurred in transmission.

Example 1.10 Let C1 = {00, 01, 10, 11}. Then C1 cannot detect any errors in transmission.

Example 1.11 Let C2 be a new code formed by repeating each codeword of C1, so

C2 = {0000, 0101, 1010, 1111}.

If a single error occurs in any transmitted codeword w, then the received word will not be a codeword.
This allows detection of any single error. If two errors occur in any transmitted codeword w, then the
received word may or may not be a codeword. So some sets of two errors will be detected, but not all
sets of two errors.

We call C2 a repetition code: in fact, it is a 2-fold repetition code, denoted Rep(2). An n-fold repetition
code is formed by taking the 2k words of length k and forming the codewords of length kn by writing
down, n times, each word of length k.

Example 1.12 Let C3 be a new code formed from C1 by adding a third digit to each codeword so
that the number of 1s in each codeword is even, so C3 = {000, 011, 101, 110}. The added digit is called
a parity-check digit, and it enables detection of any single error. This code will not detect any set of
two errors in a transmitted codeword.

Exercise 1.13 Consider a communication channel with reliability p = 1 − 10−8. Consider the code
C consisting of all 211 words of length 11 (so there are no check digits). Suppose that digits are
transmitted at 107 digits per second. On average, approximately how many words are (undetectedly)
transmitted incorrectly per minute?

5

Now let D be the code obtained from the code C in Example 1.13 by adding a parity-check digit
to each codeword of C, so that the number of 1s in each transmitted word is even. Using the same
reliability and rate of transmission, we will determine how many words are (undetectedly) transmitted
incorrectly per minute if the code D is used. The code D will detect a single error in a transmitted
word, so the probability of an incorrect word being received and not detected is

1− P (0 errors)− P (1 error) = 1−
(

12

0

)
p12(1− p)0 −

(
12

1

)
p11(1− p)1 ≈ 6.6× 10−15.

Words are transmitted at a rate of

107 digits

1 second
× 1 word

12 digits
× 60 seconds

1 minute
= 5× 107 words per minute.

Thus approximately 3.3 × 10−7 incorrect words are undetectedly transmitted per minute. That is
approximately 1 word in 6 years.

By adding only a small amount of extra information (redundancy) we drastically reduced the number
of incorrect words that slip through without detection.

1.4 Information rate of a code

In the previous subsection, we created two new codes, C2 and C3, by adding extra bits of information
(redundancy) to the codewords of C1, thus enabling error detection. In each case we added different
amounts of information, but each code can still only detect a single error. In some sense, the code C3

may be more efficient than the code C2.

Clearly, by adding extra bits of information to the words, we can improve error detection. Of course,
as check digits are added, more bits must be transmitted for each codeword, thereby increasing trans-
mission time.

Definition 1.14 Many codes are obtained by taking the 2k words of length k and adding n− k check
bits to each word, thus giving codewords of length n. A code of length n, with 2k codewords is called
an (n, k) code. The number k is the dimension of the code, and we say that such a code has k message
bits.

Definition 1.15 If C is any code of length n then the information rate or rate of C is given by

1

n
log2 |C|.

Hence if C is an (n, k) code (so |C| = 2k) then the information rate of C is k/n.

Exercise 1.16 Compare the information rates of the codes C and D from Exercise 1.13 and the
discussion following it.

Thus, for a (reasonably) small reduction in efficiency/information rate, it is possible to incorporate
extra information, allowing detection of a single error.

6

1.5 Introduction to error correction

What can be done if the existence of an error is detected? Requesting the retransmission of a message
has a significant cost: we need to interrupt and delay transmission. It would be much better if we
could not only detect the existence of an error, but could also locate it. If we can locate where the
error occurred, then we can correct it by inverting the received bit.

Example 1.17 Let Rep(3) be the 3-fold repetition code formed by writing down each word of length
2 three times, so Rep(3) = {000000, 010101, 101010, 111111}. If a single error occurs in any digit of
any transmitted codeword v, then the received word w will not be a codeword. This allows detection
of a single error. Moreover, the received word must have originated from one of the codewords. It
differs from one codeword (v) in one place, and from the other codewords in more than one place.
Hence the most likely word sent was v, so it makes sense to decode the received word as v. This is an
example of error correction.

Exercise 1.18 Consider the code Rep(3) from Example 1.17. If the word 100010 is received, what is
the most likely codeword to have been sent?

The decoding method used in the previous example makes intuitive sense as a decoding mechanism:
correct any received word to the codeword which differs from the received word in as few bit places
as possible. We can formally prove that this is valid. Recall that Φp(v, w) is the probability that the
word w is received if the codeword v is transmitted over a BSC with reliability p. In practice, we
know the word received w, but we do not know the codeword transmitted v. However, we know all
of the codewords, so can calculate Φp(u,w) for each codeword u ∈ C. Clearly, we want to choose the
most-likely transmitted word, which means we choose the codeword v for which

Φp(v, w) = max{Φp(u,w)|u ∈ C}.

We can choose such a codeword via the following theorem:

Theorem 1.19 Suppose communication is via a BSC with reliability p, 0.5 < p < 1. Let v1 and v2 be
codewords of length n, and w a word of length n. Suppose that v1 and w disagree in d1 positions, and
that v2 and w disagree in d2 positions. Then

Φp(v1, w) ≤ Φp(v2, w) if and only if d1 ≥ d2.

Proof: We have
Φp(v1, w) ≤ Φp(v2, w)

↔ pn−d1(1− p)d1 ≤ pn−d2(1− p)d2

↔
(

p

1− p

)d2−d1
≤ 1

↔ d2 ≤ d1

(since
p

1− p
> 1). �

Thus, as we wish to maximise Φp(u,w), we correct the received word w to the codeword v which differs
from w in as few positions as possible.

7

Exercise 1.20 Suppose that w = 0010110 is received over a BSC with p = 0.9. Which of the following
codewords is most likely to have been sent?

1001011, 1111100, 0001110, 0011001, 1101001.

What would have been the case if the channel instead had reliability p = 0.51?

1.6 Weights and distances

We need an efficient way of finding which codeword is closest to a received word. If there are many
codewords, it’s not practical to check every received word against every possible codeword. (For
example, the code used on the Voyager Mission had 212 = 4096 codewords.)

Recall that Kn consists of all the binary vectors (words) of length n.

Exercise 1.21 If u, v, w are words in Kn, show that

1. v + w = 0 iff v = w;

2. if v is transmitted over a BSC and w is received, then u = v + w will be a word containing a 1
in exactly those places in which v and w differ.

Definition 1.22 Given two words v and w in Kn, the corresponding error pattern or error is defined
by u = v + w, and is 1 in exactly those places in which v and w differ.

Definition 1.23 Let v ∈ Kn be a word of length n. Then the weight or Hamming weight of v is the
number of occurrences of the digit 1 in v. We denote the weight of a word v as wt(v).

Definition 1.24 The Hamming distance d(u, v) between two words u, v ∈ Kn is the number of places
in which their bits differ.

8

Exercise 1.25 Let x = 111001, y = 001111 and z = 101010. Find wt(x), d(x, y) and d(y, z).

Hamming distance satisfies the properties of a metric. That is, if x, y, z ∈ Kn, then

1. d(x, y) ≥ 0

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Note that if v and w are codewords and u is the error pattern u = v+w, then we have d(v, w) = wt(u).
That is, d(v, w) = wt(v + w).

If u = v + w, then the probability formula from Theorem 1.19 can be rewritten as

Φp(v, w) = pn−wt(u)(1− p)wt(u).

We refer to Φp(v, w) as the probability of the error pattern u = v + w.

1.7 Maximum Likelihood Decoding

Now we are ready to describe more formally how decoding is done in general. There are two commonly
used approaches to decoding.

Definition 1.26 Complete Maximum Likelihood Decoding or CMLD
Let C be the set of codewords, v ∈ C be the codeword transmitted, and w the word received. If there
is a unique codeword v ∈ C for which d(v, w) < d(v1, w) for all v1 ∈ C, v1 6= v, then we decode w as
v. If there are two or more codewords which are all closest to w, then we arbitrarily select one of the
equally closest codewords and decode w as that arbitrary choice.

Definition 1.27 Incomplete Maximum Likelihood Decoding or IMLD
Again, if there is a unique word v in C closest to w then we decode w as v. However, if there are two
or more codewords which are all equally close to w, then we request retransmission.

Unless stated otherwise, we will always assume that IMLD is being used.

Note that with Maximum Likelihood Decoding, we are always going to select the codeword which is
closest to the received word. This is not necessarily the same as selecting the correct or transmitted

9

codeword: it may be the case that so many errors occurred in transmission that the codeword closest
to the received word is not the same as the codeword which was transmitted.

One of our aims is to ensure that decoding to the closest codeword will (almost) always produce the
correct codeword.

Using IMLD, the codeword v1 ∈ C closest to the received word w is the codeword for which d(v1, w) is
least. By Theorem 1.19, this codeword v1 has the largest probability Φp(v1, w) of being the codeword
transmitted. Since d(v1, w) = wt(v1 + w), we can restate the result of Theorem 1.19 as

Φp(v1, w) ≤ Φp(v2, w) iff wt(v1 + w) ≥ wt(v2 + w).

That is, the most likely codeword sent is the one with the error pattern of smallest weight.

Thus given a received word w, the decoding strategy for IMLD is to examine the error patterns
u = v + w for all codewords v ∈ C and decode w as the codeword v∗ which gives the error pattern u∗

of smallest weight.

Example 1.28 If C = {0000, 1010, 0111}, construct an IMLD table showing, for each possible received
word w, to which codeword w will be decoded. Remember that retransmission will be requested in
the event that there is no unique codeword which minimises the weight of the error pattern.

received error patterns most likely
word codeword
w 0000 + w 1010 + w 0111 + w v

0000 0000 1010 0111 0000
0001 0001 1011 0110 0000
0010 0010 1000 0101 −−
0011 0011 1001 0100 0111
0100 0100 1110 0011 0000
0101 0101 1111 0010 0111
0110 0110 1100 0001 0111
0111 0111 1101 0000 0111
1000 1000 0010 1111 −−
1001 1001 0011 1110 −−
1010 1010 0000 1101 1010
1011 1011 0001 1100 1010
1100 1100 0110 1011 −−
1101 1101 0111 1010 0111
1110 1110 0100 1001 1010
1111 1111 0101 1000 0111

When establishing a BSC and a code, it is necessary to choose the value of n (length of the codewords)
and the actual codewords C. Some choices of n and C are better than others. There are many criteria
that are used in the choices of n and C. For now we would like to choose codewords C such that
IMLD works reasonably well. To do that we need to determine, for each codeword v, the probability
that IMLD will correctly conclude that v was transmitted.

Given n and C, we can calculate the probability Θp(C, v) that if v ∈ C is transmitted over a BSC with
reliability p then IMLD correctly concludes that v was sent.

10

Definition 1.29 Calculating the reliability of IMLD
Assume that a codeword v ∈ C is transmitted over a BSC with reliability p. Let

L(v) = {x | x ∈ Kn and x is closer to v than to any other codeword in C}.

Then Θp(C, v) is the sum of all the probabilities Φp(v, w) as w ranges over L(v). That is,

Θp(C, v) =
∑

w∈L(v)

Φp(v, w).

L(v) is precisely the set of words in Kn for which, if received, IMLD will conclude that v was sent.
We can find L(v) from an IMLD table, such as the one given above, by comparing the received words
with the most likely codewords.
Note that the definition of Θp ignores the effect of retransmission when decoding is ambiguous (so the
received word might be correctly decoded on second transmission), but Θp is still a reasonable lower
bound on the probability of correct decoding.

Example 1.30 Suppose p = 0.9, n = 4 and C = {0000, 1010, 0111} (as in Example 1.28). Compute
Θp(C, 0000).

For v = 0000, L(v) = {0000, 0100, 0001}. Thus

Θp(C, 0000) = Φp(0000, 0000) + Φp(0000, 0100) + Φp(0000, 0001)

= p4 + p3(1− p) + p3(1− p)
= 0.8019

Exercise 1.31 Let p = 0.9, n = 4 and C = {0000, 1010, 0111} (as in Examples 1.28 and 1.30.
Compute Θp(C, 1010) and Θp(C, 0111).

11

We can see that for C = {0000, 1010, 0111}, IMLD works reasonably well if 0111 is transmitted, but
performs poorly if 0000 or 1010 is transmitted. Thus we see that C is not a very good choice as a
code.

1.8 Error detection and correction

Now we can formalise the definition of error detection.

Definition 1.32 We say that a code C detects the error pattern u if and only if v+u is not a codeword,
for every v ∈ C.

Exercise 1.33 Let C = {001, 101, 110}. Show that C detects the error pattern u1 = 010, but does
not detect the error pattern u2 = 100.

A good method of determining which error patterns a code can detect is to first determine which error
patterns it cannot detect. Given a code C and any pair of codewords v and w, if e = v + w then C
cannot detect the error pattern e (as v+e = w which is a codeword). Thus the set of all error patterns
which cannot be detected by C is the set of all words that can be written as the sum of two codewords.

Exercise 1.34 Find all error patterns which can be detected by C = {1000, 0100, 1111}.

For certain codes, we can calculate some of the error patterns which the code can detect, without
needing to go through any of the above calculations. We make use of the concept of the distance
between two codewords, defined in Definition 1.24, and define the concept of the distance of a code.

Definition 1.35 The distance (or minimum distance) of a code is the smallest distance between any
pair of distinct codewords. That is, we define δ to be the distance of a code C if

δ = min
v,w∈C,v 6=w

d(v, w).

12

We know that d(v, w) = wt(v + w), so δ is the smallest value of wt(v + w) as v, w, v 6= w range over
all possible pairs of codewords.

An (n, k) code with minimum distance δ will sometimes be written as a (n, k, δ) code.

Exercise 1.36 Find the distance of the code C = {0000, 1010, 0111}.

Exercise 1.37 Find the distance of an n-fold repetition code.

We now have a very important theorem, which makes direct use of the definition of distance given
above.

Theorem 1.38 Let C be a code with minimum distance δ. Then C will detect all non-zero error
patterns of weight less than or equal to δ− 1. Moreover, there is at least one error pattern of weight δ
which C will not detect.

Proof: Let u be a non-zero error pattern with wt(u) ≤ δ − 1, and let v ∈ C. Then d(v, v + u) =
wt(v + (v + u)) = wt(u) < δ. Since C has distance δ, v + u /∈ C. Therefore C detects u.
From the definition of δ, there exist codewords v, w ∈ C with d(v, w) = δ. Consider the error pattern
u = v + w. Now w = v + u ∈ C, so C will not detect the error pattern u of weight δ. �

Note that a code C with minimum distance δ may possibly detect some error patterns of weight δ or
more, but it does not detect all error patterns of weight δ.

Exercise 1.39 Show that the code defined in Exercise 1.36 detects the error pattern 1111 of weight
4, but find an error pattern of weight 2 which C does not detect.

Definition 1.40 A code C is said to be x error detecting if it detects all error patterns of weight at
most x, and does not detect at least one error pattern of weight x + 1. By Theorem 1.38, if C has
distance δ then C is δ − 1 error detecting.

Equivalently, for a code C to be e error detecting, it must have distance e+ 1.

13

Exercise 1.41 Let C = {0000, 1010, 0111}.

1. What is the distance of C?

2. C is x-error detecting. What is x?

3. Find all error patterns that C does detect, and hence show that 1010 is the only error pattern
of weight 2 that C does not detect.

Now we can formalise the definition of error correction.

Definition 1.42 A code C corrects an error pattern u if, for all v ∈ C, v + u is closer to v than to
any other word in C.

This is equivalent to saying that C corrects the error pattern u if adding u to any codeword v results
in a word which is still closer to v than to any other codeword.

Definition 1.43 A code C is said to be x error correcting if it corrects all error patterns of weight at
most x, and does not correct at least one error pattern of weight x+ 1.

Given a codeword v we can think of a “sphere” in n dimensions of radius x centred on the codeword
v by saying that another word w falls within this sphere iff w is within distance x of codeword v.
Intuitively, C is x error correcting if it possible to take each codeword in C, draw a “sphere of radius
x” over each codeword, and have no two spheres intersect. Then any received word which falls within
the sphere of a codeword will be corrected unambiguously to the codeword on which the sphere is
based.

Exercise 1.44 If C is a code and v = 0000 ∈ C, list all words within a sphere of radius 2 of v.

Exercise 1.45 Let C = {000, 111}. Show that C corrects any error pattern of weight one, but does
not correct any error pattern of weight two.

14

The process of IMLD picks the “most-likely” codeword. When we relate error correction and the
distance of a code, we need to ensure that the most-likely codeword is the correct codeword, and not
just the closest codeword.

Let v1, v2 be codewords with d(v1, v2) = δ. Clearly, if v1 is transmitted and errors occur in δ− 1 of the
places in which v1 and v2 differ, the received word will be the same as if v2 had been transmitted and
a single error had occurred in the other place in which v1 and v2 differ. Thus δ− 1 errors in v1 can be
equivalent to 1 error in v2. Similarly, δ − 2 errors in v1 can give the same received word as 2 errors in
v2, and so on.

Suppose that we are using a code C with distance δ and a codeword v is transmitted and the word w
is received where d(v, w) = δ − 1. Then we can detect that up to δ − 1 errors have occured. However,
care must be taken with error correction since δ − 1 errors in v may be indistinguishable from just
1 error in a different codeword and so in choosing the closest codeword to the received word w, the
process of IMLD may return the incorrect codeword.

Example 1.46 Let C = {000, 111}, so C has distance 3 and hence can detect all error patterns of
weight at most 2. If the word w = 010 is received, it is more likely (and error correction will assume)
that the error pattern which occurred was 010 (of weight 1, with transmitted word 000), rather than
an error pattern 101 (of weight 2, with transmitted word 111).

We now state a fundamental theorem which forms the basis for error correcting codes.

Theorem 1.47 Let C be a code with minimum distance δ.

If δ is odd, then C can correct all error patterns with weight less than or equal to
δ − 1

2
.

If δ is even, then C can correct all error patterns with weight less than or equal to
δ − 2

2
.

Theorem 1.47 can be justified intuitively. If C has distance δ, then any two codewords are at least
distance δ apart. If δ is odd and up to (δ−1)/2 errors occur, or if δ is even and up to δ/2 errors occur,
then the received word will not be a codeword, so it is clearly possible to detect that this number of
errors has occurred. In most of these cases, it is also possible to correct the error, by selecting the
unique codeword which is closest to the received word. However, if δ is even and δ/2 errors have
occurred, then it is possible for the received word to be equidistant from two distinct codewords. Thus
it may not be possible to unambiguously select the closest codeword, so error correction may not work.

Using bxc to denote the integer part of x, we see that a code C of distance δ can correct up to

⌊
δ − 1

2

⌋
errors. We note that there is at least one error pattern of weight 1+

⌊
δ − 1

2

⌋
which C does not correct.

A code of distance δ may correct some error patterns of weight larger than that specified in Theorem
1.47. However, it will not correct all such error patterns.

15

Exercise 1.48 Assume that the information to be transmitted consists of all possible strings of length
3. Label the message bits x1, x2 and x3, and let C contain codewords of length n = 6 formed by
appending three extra digits x4, x5 and x6, so that each of the following sums are even:

x2 + x3 + x4, x1 + x3 + x5, x1 + x2 + x6.

1. List the codewords of C.

2. What is the distance of C?

3. How many errors can C detect and correct?

4. What is the information rate of C?

Exercise 1.49 Repeat the previous example, but instead form a code D by repeating each of the
three message bits three times.

Exercise 1.50 Compare the rates of codes C and D from the two previous examples.

Later, we will see how to construct a family of codes called the Hamming codes. We will see that the
Hamming code of length 7 is 2 error detecting and 1 error correcting, but has information rate 4/7.

16

2 Linear codes I

The essential goal of coding theory is to find codes which transmit information at reasonable rates,
yet also detect and correct most transmission errors. In this section we discuss a broad class of codes
which provide these features, based heavily on linear algebra.

2.1 Introduction to linear codes

Definition 2.1 A linear code is a code in which the sum (mod 2) of any two codewords is also a
codeword. That is, C is linear iff for any pair of codewords v, w ∈ C, we also have v + w ∈ C.

Almost every code we consider for the remainder of this course will be linear.

Exercise 2.2 Show that C1 = {0000, 0101, 1010, 1111} is linear, but that
C2 = {0000, 1001, 1010, 0011, 1111} is not linear.

Exercise 2.3 Explain why any linear code must contain the zero word.

Exercise 2.4 Five of the eight codewords of a linear code are

0001111, 0110101, 1010011, 1011100, 1100110.

Find the remaining three codewords.

One of the advantages of a linear code is that its distance is easy to find.

Theorem 2.5 For any linear code C, the distance of C is the weight of the nonzero codeword of
smallest weight.

Proof: Let C be a code of distance δ, and let w be the nonzero codeword of smallest weight. Certainly,
δ ≤ wt(w). Assume that there are two codewords v1, v2 ∈ C such that δ = d(v1, v2) = d < wt(w). As
C is linear, v = v1 + v2 must be a codeword, of weight d(v1, v2) < wt(w). But this contradicts the
assumption that w is the nonzero codeword of smallest weight. �

Exercise 2.6 Find the distance of the linear code C = {0000, 1100, 0011, 1111}.

17

It is easy to find the distance of a linear code. Other advantages of linear codes include:

1. For linear codes, there is a procedure for IMLD which is simpler and faster than we have seen
so far (for some linear codes, there are very simple decoding algorithms).

2. Encoding using a linear code is faster and requires less storage space than for arbitrary non-linear
codes.

3. The probabilities Θp(C, v) are straightforward to calculate for a linear code.

4. It is easy to describe the set of error patterns that a linear code will detect.

5. It is much easier to describe the set of error patterns a linear code will correct than it is for
arbitrary non-linear codes.

Since a subset U ⊆ Kn is a subspace of Kn iff U is closed under addition, we conclude that C is a
linear code iff C is subspace of Kn.

Thus, for any subset S of Kn, the span of S is a linear code, C = 〈S〉.
The dimension of a linear code is the dimension of the corresponding subspace of Kn. Similarly, a
basis for a linear code is a basis for the corresponding subspace of Kn.

If a linear code C has dimension k and if B = {v1, v2, . . . , vk} is a basis for C, then each codeword w
in C can be written as

w = α1v1 + α2v2 + . . .+ αkvk

for a unique choice of digits α1, α2, . . . , αk. Noting that each αi is 0 or 1, for 1 ≤ i ≤ k, there are 2k

distinct choices for α1, α2, . . . , αk.

We thus have the following very important theorem:

Theorem 2.7 A linear code of dimension k contains precisely 2k codewords.

Thus, using the notation introduced earlier in the course, a linear code with length n, dimension k
and distance δ is an (n, k) linear code of distance δ, or equivalently, an (n, k, δ) linear code. Such a
code has information rate k/n.

2.2 Dual codes

We now see how to derive a new code from a given linear code, using the orthogonal complement.

Definition 2.8 For S ⊆ Kn, if C = 〈S〉, then we write C⊥ = S⊥ and call C⊥ the dual code of C.

Theorem 2.9 Let C = 〈S〉 be the linear code generated by a subset S of Kn. If the dimension of C
is k1 and the dimension of C⊥ is k2 then we must have k1 + k2 = n.

Exercise 2.10 Suppose that C is a (9, 4) linear code. How many codewords are in C? How many
codewords are in C⊥?

18

2.3 Bases for codes

In this section we develop methods for finding bases for a linear code C = 〈S〉 and its dual C⊥.

Algorithm 2.11 Algorithm for finding a basis for C = 〈S〉.
Let S be a nonempty subset of Kn. Form the matrix A whose rows are the words in S. Use EROS
to find a REF of A. Then the nonzero rows of the REF of A form a basis for C = 〈S〉.

Algorithm 2.11 works because the rows of A generate C, and EROS simply interchange codewords
(rows) or replace one codeword (row) with the sum of two rows (another codeword) giving a new
set of codewords which still generates C. Clearly the nonzero rows in a matrix in REF are linearly
independent. Note that Algorithm 2.11 does not produce a unique basis for C = 〈S〉, and there is no
guarantee that the words in the basis occur in the given set S.

Exercise 2.12 Use Algorithm 2.11 to find a basis for the linear code C = 〈S〉 where
S = {11101, 10110, 01011, 11010}.

Now we give an algorithm for finding a basis for the dual code C⊥. This algorithm incorporates
Algorithm 2.11, so it also gives a basis for C.

Algorithm 2.13 Algorithm for finding bases for C and C⊥.
Let S be a nonempty subset of Kn. Form the matrix A whose rows are the words in S. Use EROS to
place A in RREF. Let G be the k × n matrix consisting of all the nonzero rows of the RREF. Then
the rows of G form a basis for C. Let X be the k × (n− k) matrix obtained from G by deleting the
leading columns of G. Form an n× (n− k) matrix H as follows:

1. in the rows of H corresponding to the leading columns of G, place, in order, the rows of X

2. in the remaining n − k rows of H, place, in order, the rows of the (n − k) × (n − k) identity
matrix In−k.

Then the columns of H form a basis for C⊥.

19

Here is a more intuitive description of Algorithm 2.13. Start with matrix A, and use EROS to convert:

A→
(

G
0

)
in RREF.

Then permute the columns of G to form G→ G′ = (Ik X) .
Form a matrix H′ as follows:

H′ =

(
X

In−k

)
.

Apply the inverse of the permutation applied to the columns of G to the rows of H′ to form H.

Example 2.14 Consider the code C = 〈S〉 where S = {11010, 10001, 01001, 11000}. Use Algorithm
2.13 to find a basis for C and a basis for C⊥.

A =

1 1 0 1 0
1 0 0 0 1
0 1 0 0 1
1 1 0 0 0

→

1 1 0 1 0
0 1 0 1 1
0 1 0 0 1
0 0 0 1 0

→

1 1 0 1 0
0 1 0 1 1
0 0 0 1 0
0 0 0 1 0

→

1 1 0 1 0
0 1 0 1 1
0 0 0 1 0
0 0 0 0 0

→

1 0 0 0 1
0 1 0 1 1
0 0 0 1 0
0 0 0 0 0

→

1 0 0 0 1
0 1 0 0 1
0 0 0 1 0
0 0 0 0 0

 which is in RREF

A basis for C is {10001, 01001, 00010}.

Now we have G =

 1 0 0 0 1
0 1 0 0 1
0 0 0 1 0

, so we have G′ =

 1 0 0 0 1
0 1 0 0 1
0 0 1 0 0

 =
(

I3 X
)
.

Thus k = 3 and X =

 0 1
0 1
0 0

.

The rows of X are placed in the first three rows, respectively, of the 5 × (5 − 3) matrix H′. The
remaining rows of H′ are filled with the the 2× 2 identity matrix. Thus

H′ =

0 1
0 1
0 0
1 0
0 1

 , and so H =

0 1
0 1
1 0
0 0
0 1

 .

Thus a basis for C⊥ is {00100, 11001}.

Exercise 2.15 Verify that for the previous example, GH = 0.

20

We make a few comments to justify why Algorithm 2.13 works. The n− k columns of H are linearly
independent and dimC⊥ = n− dimC = n− k, so the columns of H are a basis for a subspace of the
correct dimension. Furthermore,

G′H′ = (Ik X)

(
X

In−k

)
= X + X = 0.

We apply the same permutation to the columns of G′ and to the rows of H′ to obtain G and H, so
we still get GH = 0. Thus each row of G is orthogonal to each column of H, and so if the rows of G
form a basis for C then the columns of H must form a basis for C⊥.

Exercise 2.16 If S = {101010, 010101, 111111, 000111, 101100}, find a basis B for the code C = 〈S〉,
and find a basis B⊥ for the dual code C⊥. Determine the number of codewords in each of C and C⊥.

21

2.4 Generating matrices

We now use the material from the previous section to create a matrix which is used in the encoding
process for a linear code.

Recall that the rank of a matrix M over K is the number of nonzero rows in any REF of M.

Definition 2.17 If C is a linear code of length n and dimension k, then any matrix whose rows form
a basis for C is called a generating matrix for C. Such matrices must have k rows and n columns, and
have rank k.

Then we have the following two theorems:

Theorem 2.18 A matrix G is a generating matrix for some linear code C iff the rows of G are
linearly independent (so the rank of G equals the number of rows of G).

Theorem 2.19 If G is a generating matrix for a linear code C, then any matrix row equivalent to G
is also a generating matrix for C. In particular, any linear code has a generating matrix in RREF.

To find a generating matrix for a linear code C, we can form the matrix whose rows are the nonzero
codewords in C. By the definition of ‘linear’ we must have C = 〈C〉, so we can use Algorithm 2.11 to
produce a basis for C. Then the matrix whose rows are these basis vectors forms a generating matrix
for C.

Exercise 2.20 Find a generating matrix in RREF for the linear code C = {0000, 1110, 0111, 1001}.

A k × n matrix G is a generating matrix for an (n, k) linear code if the binary words that can be
expressed as the sum of a subset of the rows of G are exactly the codewords of C.

Exercise 2.21 Let C = {000000, 001110, 010101, 011011, 100011, 101101, 110110, 111000}. Show that

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

is a generating matrix for C.

22

Having defined a generating matrix, we can use standard techniques from linear algebra to show how
messages of length k are encoded as codewords of length n.

Let C be a linear (n, k) code. If G is a generating matrix for C and if u is a word of length k written
as a row vector, then v = uG is a codeword in C, since v is a linear combination of the rows of G,
and these rows form a basis for C.

Let a message be u = α1α2 . . . αk, and let g1, g2, . . . , gk be the rows of G. Then

v = uG = α1g1 + α2g2 + . . .+ αkgk

is a codeword in C.

It is easy to see that if u1G = u2G then we must have u1 = u2, since each codeword in C is a unique
linear combination of the codewords in a basis. Thus no codeword v = uG in C is produced by more
than one word u ∈ Kk.

These observations lead to an important theorem.

Theorem 2.22 If G is a generating matrix for a linear code C of length n and dimension k then
v = uG ranges over all 2k codewords in C as u ranges over all 2k words of length k. Thus C is the
set of all words uG, u ∈ Kk. Moreover, u1G = u2G iff u1 = u2.

If our messages contain k bits, we can use Theorem 2.22 to encode the messages. Indeed, that theorem
says that the messages which can be encoded by a linear (n, k, δ) code are exactly all messages u ∈ Kk.
The k-bit message is encoded as an n-bit codeword, so only k digits in any codeword are used to carry
the message.

Exercise 2.23 Let C be the (5, 3) linear code with generating matrix

G =

 1 0 1 1 0
0 1 0 1 1
0 0 1 0 1

 .

Assign letters to the words in K3 as follows:

000 100 010 001 110 101 011 111
A B E H M R T W

Using the generating matrix G, encode the message BETHERE.

23

2.5 Equivalent codes

Definition 2.24 Any k×n matrix G with k < n whose first k columns form the k×k identity matrix
Ik, so G = (Ik X), is said to be in standard form. We note that G clearly must automatically have
linearly independent rows and is in RREF. Thus G is a generating matrix for some linear code of
length n and dimension k. We say that the code C generated by G is systematic.

Not all linear codes have a generating matrix in standard form. For example, the code
C = {000, 100, 001, 101} has six possible generating matrices. Its generating matrix in RREF is:

G =

(
1 0 0
0 0 1

)
Hence C is not a systematic code.

Exercise 2.25 Is the linear code C = {00000, 10110, 10101, 00011} a systematic code?

There are several important advantages in using a linear code with a generating matrix in standard
form. Let C be a linear (n, k) code with generating matrix G in standard form.

1. Since G is in standard form, G = (Ik X), and so Algorithm 2.13 immediately gives a basis for
the dual code C⊥ (without any need to permute columns of G and rows of H′) as the columns
of

H =

(
X

In−k

)
.

2. By Theorem 2.22, each codeword v ∈ C can be written as uG for precisely one word u ∈ Kk. We
can think of u as the message to be sent, but we transmit the (longer) codeword v = uG. Errors
may occur during transmission, and IMLD aims to recover v from the received word. Assuming
v is correctly inferred, the receiver now needs to recover the message u from v. Since G is in
standard form, it is very easy to recover u from v. The codeword v is given by:

v = uG = u (Ik X) = (uIk uX) = (u uX) .

Thus, the message bits u form the first k bits of the codeword v.

We have the following important theorem:

Theorem 2.26 If C is a linear code of length n and dimension k with generating matrix G in standard
form and a message u is to be transmitted, then the first k digits in the codeword v = uG form the
message word u ∈ Kk.

24

Exercise 2.27 Suppose C is a (7, 4) linear code with generating matrix

G =

1 0 0 0 1 0 1
0 1 0 0 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 =
(

I4 X
)
.

Calculate the codeword corresponding to the message word 0111. Which message word corresponds
to the codeword 1011000?

We have just seen several advantages of using a linear code with generating matrix in standard form.
However, we also saw that some codes have no generating matrix in standard form. Given such a
code, can we produce a different code, which is somehow equivalent to our original code, but with a
generating matrix in standard form?

Definition 2.28 If C is any block code of length n, we can obtain a new block code C ′ of length n
by choosing a particular permutation of the n digits, and then consistently rearranging every word in
C according to that permutation. The resulting code C ′ is said to be equivalent to C.

Example 2.29 Let n = 5 and C = {11111, 01111, 00111, 00011, 00001}. If we rearrange the digits
into the order 2, 1, 4, 5, 3 then the resulting code C ′ = {11111, 10111, 00111, 00110, 00010} is equivalent
to C.

Rearranging digits in codewords is equivalent to rearranging columns in a generating matrix. Hence
we have the following theorem:

Theorem 2.30 Any linear code C is equivalent to a linear code having a generating matrix in standard
form.

Proof: If G is a generating matrix for C, place G in RREF. Rearrange the columns of the RREF
so that the columns containing the leading ones come first and hence form an identity matrix. The
result is a generating matrix G′ in standard form for a code C ′ which is equivalent to C. �

Example 2.31 At the start of this section, we saw that the code C generated by

G =

(
1 0 0
0 0 1

)
has no generating matrix in standard form. However, if the order of transmission of digits is changed
so that the third digit is transmitted before the second digit, then we obtain a new code C ′ with
generating matrix

G′ =

(
1 0 0
0 1 0

)
.

The codes C ′ = {000, 100, 010, 110} and C = {000, 100, 001, 101} are equivalent codes.

Note that C and C ′ are different codes, although they have many similar properties. They are both
linear, both have length 3, dimension 2 and distance 1. However, C ′ has an important advantage: it
has a generating matrix G′ in standard form.

25

Exercise 2.32 In Exercise 2.25, we showed that C = {00000, 10110, 10101, 00011} is not systematic.
Find a systematic code C ′ which is equivalent to C.

2.6 Parity Check Matrices

We now develop another matrix for linear codes, closely related to the generating matrix, but used in
error detection and correction.

Definition 2.33 A matrix H is called a parity check matrix for a linear code C if the columns of H
form a basis for the dual code C⊥.

If C has length n and dimension k then, since the sum of the dimensions of C and C⊥ is n, any parity
check matrix for C must have n rows, n− k columns and rank n− k.

Theorem 2.34 A matrix H is a parity check matrix for some linear code iff the columns of H are
linearly independent.

The next theorem then describes a linear code in terms of its parity check matrix.

Theorem 2.35 If H is a parity check matrix for some linear code C of length n, then C consists
precisely of all words v ∈ Kn such that vH = 0.

Some references on coding theory write H as its transpose, that is, as a (n−k)×n matrix, and instead
of writing vH = 0, write HvT = 0T .

Exercise 2.36 Let C = {0000, 0011, 1100, 1111}, so C is a (4, 2) linear code. Verify that

H =

1 1
1 1
0 1
0 1

is a parity check matrix for C.

26

We explain why the matrix H is called a parity check matrix.

For an (n, k) linear code, the matrix equation xH = 0, where x = (x1, x2, . . . , xn), is a shorthand way
of writing a set of n−k simultaneous linear equations in the variables x1, x2, . . . , xn. If the jth column
of H has entries of 1 in the rows m1,m2, . . .mj, then the bit-sum

xm1 + xm2 + . . .+ xmj
≡ 0 (mod 2).

In other words, the binary word x satisfies xH = 0 iff the sums (obtained by ordinary addition) of
certain of its bits (as determined by H) are even, and thus have even parity. The n−k linear equations
are thus referred to as parity check equations of the code, and H is called the parity check matrix.

If we are given a generating matrix G for a linear code C, we can find a parity check matrix for C
using Algorithm 2.13. The parity check matrix is the matrix H constructed in Algorithm 2.13, since
the columns of H form a basis for C⊥.

Exercise 2.37 Find a parity check matrix for the code C = {000000, 101010, 010101, 111111}.

We can now characterise the relationship between a generating matrix and a parity check matrix for
a linear code, and the relationship between these matrices for a linear code and its dual code.

Theorem 2.38 Matrices G and H are generating and parity check matrices respectively for some
linear code C iff

(i) the rows of G are linearly independent

(ii) the columns of H are linearly independent

(iii) the number of rows of G plus the number of columns of H equals the number of columns of G
which equals the number of rows of H

(iv) GH = 0.

Theorem 2.39 H is a parity check matrix for a linear code C iff HT is a generating matrix for C⊥.

Theorem 2.39 follows from Theorem 2.38 and the fact that HTGT = (GH)T = 0T = 0.

27

Given any one of the generating or parity check matrices for a code C or the dual code C⊥, Algorithm
2.13 and Theorem 2.39 can be used to find the other three matrices. If we let GC and HC denote the
generating and parity check matrix respectively of C, and GC⊥ and HC⊥ denote the generating and
parity check matrix respectively of C⊥, then the following diagram shows how this is done.

Transpose

Algorithm

Algorithm

Transpose

CG CH

G
C

H
C

Let’s look at a comprehensive example.

Example 2.40 Let C be a linear code with parity check matrix

HC =

1 1
1 1
0 1
1 0
0 1

 =

(
X
I2

)
.

(a) By taking the transpose of HC , we find a generating matrix for C⊥.

GC⊥ = HT
C =

(
1 1 0 1 0
1 1 1 0 1

)
.

(b) Starting with GC⊥ , we use Algorithm 2.13 to find a parity check matrix for C⊥. The RREF of
GC⊥ is (

1 1 0 1 0
0 0 1 1 1

)
,

so Algorithm 2.13 gives the following parity check matrix for C⊥:

HC⊥ =

1 1 0
1 0 0
0 1 1
0 1 0
0 0 1

 .

(c) We find a generating matrix for C by taking the transpose of the parity check matrix HC⊥ . Thus,

GC =

 1 1 0 0 0
1 0 1 1 0
0 0 1 0 1

 .

28

Note that we could have also found a generating matrix for C by starting with HC and applying
Algorithm 2.13 backwards. This would give us the following generating matrix for C.

G′C =
(

I3 X
)

=

 1 0 0 1 1
0 1 0 1 1
0 0 1 0 1

 .

Now that we are familiar with the relationship between a generating matrix and a parity check matrix
for a linear code C, we will look at how a parity check matrix can be used for error detection.

Let C be a linear code with parity check matrix H. If v ∈ C, then by definition we must have vH = 0.
If we receive a word w, we can calculate wH. If wH is not equal to 0, then we have detected an error.

Exercise 2.41 The following matrix is a parity check matrix for a linear code C.

HC =

1 1
1 1
0 1
1 0
0 1

Use HC to determine which of the following words are codewords of C.

• 11000

• 01100

• 11101

• 11010

The parity check matrix can also be used for error correction. In order to see how to do this, we first
need a bit more background.

29

2.7 Distance of a linear code

We have seen that the distance of a linear code is the weight of the nonzero codeword of smallest
weight. Now, we see how to find the distance of a linear code by looking at a parity check matrix of
the code.

Theorem 2.42 Let H be a parity check matrix for a linear code C. Then C has distance δ iff every
set of δ−1 rows of H is linearly independent, while at least one set of δ rows of H is linearly dependent.

Proof: Suppose that C has distance δ. Let v ∈ C be a nonzero codeword of minimum weight. Since
C is linear wt(v) = δ. Since v ∈ C, we have vH = 0. Now vH is a linear combination of exactly δ rows
of H. Thus the set of δ rows of H, corresponding to the δ nonzero bits of v, is a linearly dependent
set. Now let w be any word of weight less than or equal to δ − 1. Then w 6∈ C, so wH 6= 0. Thus no
set of fewer than δ rows of H can be linearly dependent. Thus every set of δ − 1 rows of H is linearly
independent.

Now suppose that every set of δ − 1 rows of H is linearly independent while at least one set of δ rows
of H is linearly dependent. Then there exists a word u of weight δ such that uH = 0. (The word u
has ones in the bits corresponding to the rows in the set of δ rows of H that is linear depdendent.)
Thus the distance of C is at most δ. Since every set of δ − 1 rows of H is linearly independent, no
nonzero linear combination of fewer than δ rows of H will give 0. Thus if w is a word of weight less
than δ, then wH 6= 0 and so w 6∈ C. Thus u is a word of minimum weight in C and the distance of C
is δ. �

Exercise 2.43 Determine the distance of the linear code C with parity check matrix

H =

1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

 .

2.8 Cosets

Definition 2.44 If C is a linear code of length n and u is any word of length n, we define the coset
of C determined by u to be the set of all words of the form v + u as v ranges over all the codewords
in C. We denote this coset by C + u. Thus

C + u = {v + u | v ∈ C}.

Intuitively, a coset induced by a word u is the set of all possible received words if any codeword was
transmitted and the error pattern u occurred.

30

Example 2.45 Let C = {000, 111} and u = 101. Then

C + u = C + 101 = {000 + 101, 111 + 101} = {101, 010}.

Notice that if we consider the coset of C induced by a codeword, then we get C.

C + 111 = {000 + 111, 111 + 111} = {111, 000} = C.

The following theorem gives some important results on cosets.

Theorem 2.46 Let C be a linear code of length n and let u, v be words of length n. Then:

(1) The word u is in the coset C + u.

(2) If u is in the coset C + v then C + u = C + v.

(3) If u+ v ∈ C then u and v are in the same coset.

(4) If u+ v /∈ C then u and v are in different cosets.

(5) Every word in Kn is contained in one and only one coset of C; thus, either C + u = C + v or
C + u and C + v have no words in common.

(6) | C + u |=| C |; that is, the number of words in a coset of C is equal to the number of words in
C.

(7) If C has dimension k then there are exactly 2n−k different cosets of C, and each coset contains
exactly 2k words.

(8) The code C is itself one of its cosets.

Example 2.47 List all of the cosets of the linear code C = {0000, 1011, 0101, 1110}.
We apply Theorem 2.46. First, C is itself a coset (Theorem 2.46 (8)). Then every word in K4

determines a coset (by (2) and (5)), so we can pick a word in K4 not in C. If we take the word 1000,
we have

C + 1000 = {1000, 0011, 1101, 0110}.
(Note that 1000 is in the coset, as suggested by (1).) Now pick another word in K4 which is not in
either coset so far, say 0100. Then

C + 0100 = {0100, 1111, 0001, 1010}.
Finally, if we choose the word 0010 not in any coset so far, we get

C + 0010 = {0010, 1001, 0111, 1100}.
This is all the cosets: the code C has dimension k = 2, we have listed 2n−k = 24−2 = 4 cosets each
with 2k = 22 = 4 words (7), and every word in K4 appears in exactly one coset (5). Also, note that
for any words whose sum is in C, those two words are in the same coset (3), and for any two words
whose sum is not in C, those words are in different cosets (4).

31

Exercise 2.48 List the cosets of the code having the parity check matrix

H =

1 0
1 1
1 0
0 1

 .

2.9 MLD for Linear Codes

One of the fundamental goals of coding theory is to design codes which permit easy and rapid decoding
of a received word. We describe such a method for MLD for a linear code, using the parity check matrix
and cosets of the code.
Let C be a linear code. Assume the codeword v ∈ C is transmitted and the word w is received, with
an error pattern u = v + w. Clearly, w + u = v ∈ C, so the error pattern u and the received
word w are in the same coset of C by (3) of Theorem 2.46.
Since error patterns of small weight are most likely to occur, the following is an algorithm for efficient
decoding using cosets.

Algorithm 2.49 Decoding using cosets
If C is a linear code and the word w is received, we choose a word u of least weight in the coset C +w
(which is the coset containing w) and conclude that v = w + u was the word sent.

If there is no unique word of least weight we can either arbitrarily pick a word of least weight (CMLD),
or request retransmission (IMLD).

32

Example 2.50 Let C = {0000, 1011, 0101, 1110} as in Example 2.47. Then the cosets of C are:

Coset 1 Coset 2 Coset 3 Coset 4
0000 1000 0100 0010
1011 0011 1111 1001
0101 1101 0001 0111
1110 0110 1010 1100

Let w = 1101 be the received word. This is in the second coset in the above table, so choose u = 1000
as the error pattern of least weight. Hence we conclude that v = w+ u = 1101 + 1000 = 0101 was the
codeword most likely sent.

If w = 1111 is received, then the words 0100 and 0001 have least weight in the corresponding coset.
Thus decoding either arbitrarily chooses one of these words as the most likely error pattern (CMLD),
or requests retransmission (IMLD).

The hardest part of this procedure is to find the coset containing the received word w and then to find
the word of least weight in the coset. We can use the parity check matrix to develop an easy way of
doing this.

Definition 2.51 Let C be a linear code of length n and dimension k. Let H be a parity check matrix
for C. For any word w ∈ Kn, we define the syndrome of w to be wH, which is a word in Kn−k.

Exercise 2.52 For the code C defined in Example 2.50, a parity check matrix is given by

H =

1 1
0 1
1 0
0 1

 .

Calculate the syndrome of the received word w = 1101. Then calculate the syndrome of the word
u = 1000 which is the word of least weight in the coset C + w.

33

Notice that the syndromes of w and u are the same. It is always the case that words from the same
coset will have the same syndrome. Suppose we have a linear code C with parity check matrix H, and
let u be a word not in C. If v ∈ C then the word v + u lies in the same coset as u. The syndrome of
v + u is equal to the syndrome of u since

(v + u)H = vH + uH = 0 + uH = uH.

Furthermore, in Exercise 2.52, notice that if w = 1101 is received, MLD concludes that v = u + w =
1101 + 1000 = 0101 was sent, so there was an error in the first digit. Notice also that for the error
pattern u, the syndrome uH is equal to the row of H (the first) corresponding to the location of the
most likely error. In this way the syndrome indicates the symptoms of the error.

The following theorem gives some basic and useful facts about the syndrome.

Theorem 2.53 Let C be a linear code of length n, H be a parity check matrix for C and w, u ∈ Kn.
Then

(a) wH = 0 iff w is a codeword in C.

(b) wH = uH iff w and u lie in the same coset of C.

(c) If u is the error pattern in a received word w then uH is the sum of the rows of H that correspond
to the positions where errors occurred in transmission.

Note that if no errors occur in transmission and w is received then wH = 0. But wH = 0 does not
necessarily imply that no errors occurred, since the codeword w received is not necessarily the same
as the codeword sent.

Since words in the same coset have the same syndrome and words in different cosets have different
syndromes, we can identify a coset by the syndrome of any word in the coset. Thus for a (n, k) code,
the 2n−k words of length n− k each occurs as the syndrome of exactly one of the 2n−k cosets.

To calculate the syndrome of a particular coset, we select a word w in the coset and calculate the
syndrome wH. For MLD, we want a word of least weight in the coset to use as the error pattern.
Any word of least weight in a coset is called a coset leader. If there is more than one candidate for
coset leader in a coset, we choose one arbitrarily (for CMLD), or remember that we need to request
retransmission if this syndrome arises (for IMLD).

Example 2.54 Let C be the code from Example 2.50, with parity check matrix H given in Exercise
2.52. For each coset we can calculate the syndrome using the coset leader:

Coset leader Syndrome
u uH

0000 00
1000 11

0100 or 0001 01
0010 10

Note again that each word of length 2 occurs precisely once as a syndrome.

34

Definition 2.55 The table in Example 2.54 which matches each syndrome with its coset leader(s) is
called a standard decoding array or SDA. To construct an SDA, first list all of the cosets for the code
and choose from each coset the word(s) of least weight as coset leader(s) u. Then find a parity check
matrix H for the code and for each coset leader u calculate its syndrome uH.

Exercise 2.56 Let C = {00000, 10100, 01011, 11111}. Construct an SDA for C.

First we calculate the cosets of C:

C = {00000, 10100, 01011, 11111}
10000 + C = {10000, 00100, 11011, 01111}
01000 + C = {01000, 11100, 00011, 10111}
00010 + C = {00010, 10110, 01001, 11101}
00001 + C = {00001, 10101, 01010, 11110}
11000 + C = {11000, 01100, 10011, 00111}
10010 + C = {10010, 00110, 11001, 01101}
10001 + C = {10001, 00101, 11010, 01110}

Having constructed an SDA, it is easy to find the codeword corresponding to the received word w
using MLD. We first calculate the syndrome wH, then find the coset leader u in the SDA with the
same syndrome (so uH = wH). Then we conclude that v = w + u was the most likely transmitted
codeword, or request retransmission.

Exercise 2.57 Let C be the code given in Exercise 2.56. Use the method of syndrome decoding to find
the codewords corresponding to each of the received words w1 = 10101, w2 = 01110 and w3 = 00011.

35

We can check that for the previous example, the method of syndrome decoding agrees with decoding
by chosing the closest codeword.

In Exercise 2.57, we decoded w1 = 10101 to v1 = 10100. By comparing the distance from w1 to each of
the codewords d(00000, 10101) = 3, d(10100, 10101) = 1, d(01011, 10101) = 4 and d(11111, 10101) = 2,
we see that v1 is the closest codeword to w1.

In Exercise 2.57 we requested retransmission for the received word w2 = 01110. This is the correct
outcome since d(11111, 01110) = 2 and d(01011, 01110) = 2.

In practice, a code might have 250 coset leaders and syndromes, which makes an SDA for an arbitrary
linear code very large. Thus we still have not resolved decoding for an arbitrary linear code. However,
for certain linear codes, finding the coset leaders is easy.

For example, consider the (7, 4, 3) code with generating matrix G and parity check matrix H.

G =

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 H =

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

This code has 24 = 16 codewords, and so it has 27−4 = 23 = 8 cosets, each with 16 words. But note
that there are exactly 8 words of length 7 with weight less than or equal to one. Also note that since
this code has distance 3, it can correct up to one error. Thus each of the words of weight less than or
equal to one must be a coset leader. Since we have 8 such words, no word of weight more than one
is a coset leader, so it corrects only error patterns of weight one. We’ll come back to a more detailed
discussion of this code in a later section.

2.10 Reliability of IMLD for linear codes

Let C be a linear code of length n and dimension k. Recall that Θp(C, v) is the probability that if
the codeword v is sent over a binary symmetric channel with reliability p, then IMLD will correctly
conclude that v was sent. When we looked at reliability for a general code, we found that Θp(C, v)
might depend on which codeword v we use. For linear codes, the value of Θp(C, v) is the same for all
codewords v in C.

Recall that L(v) is the set of received words for which the process of IMLD will conclude that v was
the codeword transmitted, and that

Θp(C, v) =
∑

w∈L(v)

Φp(v, w)

where Φp(v, w) = pn−d(1− p)d and v and w differ in d positions.

For each unique coset leader u and for each codeword v in C, the word v + u is closer to v than to
any other codeword. Also if a word w 6= v + u for some codeword v and some unique coset leader u,
then w is at least as close to some other codeword as it is to v. Thus, for a linear code, the set L(v)

36

of words that are closer to v than to any other codeword is

L(v) = {w | w = v + u where u is a unique coset leader}.

Note that if v is the zero word, then L(v) = L(0) is the set of unique coset leaders.

If w = v+u then the probability that w is received if v is transmitted depends only on the weight of u

Φp(v, w) = Φp(v, v + u) = pn−wt(u)(1− p)wt(u),

so for a linear code C, the value of Θp(C, v) does not depend on the specific codeword v. For a linear
code C, we denote Θp(C, v) by Θp(C) and

Θp(C) = Θp(C, v) =
∑

w∈L(v)

Φp(v, w) =
∑
u∈L(0)

pn−wt(u)(1− p)wt(u).

Thus, to calculate the reliability of IMLD for a linear code C, just calculate the probability of each
unique coset leader occurring as an error pattern and then sum these probabilities to obtain Θp(C).

Notice that we have also shown that for a linear code, the set of error patterns that can be corrected
using IMLD is equal to the set of unique coset leaders.

Exercise 2.58 Let C be the linear code from Exercise 2.56. Determine the reliability of IMLD for
the code C using a BSC with reliability p = 0.97.

37

2.11 Encoding and decoding summary

We now summarise the information transmission process for a linear code of length n and dimension
k. The possible messages are the 2k words of length k, that is, all the vectors in the vector space Kk.
The codewords are 2k of the possible 2n words of length n, and the code is a subspace of the vector
space Kn. The received words are all the possible words of length n. Let G and H be a generating
matrix and parity check matrix, respectively, for the linear code.

Message word u
of length k

compute uG
−→

Codeword v = uG
of length n

noisy channel
−→

Received word w
of length n

compute wH ↓

Most likely mes-
sage word is u′

decode using G
←−

Most likely code-
word is v′ = w + e

compute w + e
←−

Most likely er-
ror pattern e is
the coset leader
of the coset with
syndrome wH

Note that how you determine u′ depends on your generating matrix G. If G is in RREF then you can
find u′ by choosing the components of v′ that correspond to the leading columns of G. Note also that
depending on how many errors occurred during transmission over the channel, u′ may or may not be

the same as u. If δ is the distance of C and fewer than

⌊
δ − 1

2

⌋
errors occurred, then u′ = u.

Exercise 2.59 Let C be the code with generating matrix G and parity check matrix H where

G =

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 H =

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

Write down the results of the encoding, transmission and decoding processes, starting with the message
word u = 0101 and assuming that a single error in position 4 occurs during transmission.
Write down the results of the encoding, transmission and decoding processes, starting with the message
word u = 0101 and assuming that two errors in positions 4 and 7 occur during transmission.

38

3 Linear codes II

In this section we look at some construction techniques for linear codes and investigate some important
families of linear codes.

3.1 Some bounds for codes

We now look at the problem of determining how many words a linear code C of length n and distance
δ can possibly have. This problem has not been solved in general, although it has been settled for
certain values of n and δ. There are two well-known bounds for the maximum number of possible
codewords for a given n and δ. Clearly we would like to choose codes with as many possible codewords
for given values of n and δ.

The number of distinct words of length n and weight t is(
n

t

)
=

n!

t!(n− t)!
.

Theorem 3.1 If 0 ≤ t ≤ n and v is a word of length n then the number of distinct words of length n
and at distance at most t from v is precisely(

n

0

)
+

(
n

1

)
+ . . .+

(
n

t

)
.

Proof: Given a fixed word v of length n, to find all words at distance exactly i from v, we add to v
each word of weight i and length n. There are

(
n
i

)
such words. Letting i range from 0 to t gives the

result. �

Let C be a code of length n and distance δ = 2t + 1. Then there is no word w at distance at most
t from any two distinct codewords. Thus the list of words at distance at most t from any codeword
v1 must have no intersection with the list of words at distance at most t from any other codeword v2.
Hence we have the following very important result.

Theorem 3.2 The Hamming Bound
If C is a code of length n and distance δ = 2t+ 1 or δ = 2t+ 2 then

| C |
((

n

0

)
+

(
n

1

)
+ . . .+

(
n

t

))
≤ 2n,

or equivalently,

| C |≤ 2n(
n
0

)
+
(
n
1

)
+ . . .+

(
n
t

) .
The Hamming bound is an upper bound for the number of words in a code (linear or not) of length
n and distance δ = 2t+ 1. Note that such a code will correct all error patterns of weight less than or
equal to t.

Recall that for a linear code, | C | must be a power of 2.

39

Exercise 3.3 Find an upper bound for the number of codewords in a linear code C of length n = 6
and distance δ = 3.

Exercise 3.4 Investigate the Hamming bound for the (7, 4, 3) code C with generator matrix

G =

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

(Note that this is the code that was discussed at the end of the Subsection 2.9.)

The next two results provide further inequalities involving the number of codewords in a linear code.
The first gives a check on whether a linear code with given length, dimension and distance can possibly
exist, and the second gives a lower bound for the maximum number of codewords in a linear code of
given length and distance.

Theorem 3.5 The Gilbert-Varshamov Bound Let n, k and δ be integers. If(
n− 1

0

)
+

(
n− 1

1

)
+ . . .+

(
n− 1

δ − 2

)
< 2n−k,

then there exists a linear code of length n, dimension k and distance at least δ.

Proof: Suppose that the integers n, k and δ satisfy(
n− 1

0

)
+

(
n− 1

1

)
+ . . .+

(
n− 1

δ − 2

)
< 2n−k.

We will construct an n× (n− k) matrix H with linearly independent columns and in which no set of
δ − 1 or fewer rows is linearly dependent. This matrix can then be used as a parity check matrix to
give a linear code which satisfies the theorem.

40

First note that the number of linear combinations of up to x vectors chosen from a set of y vectors is:(
y

0

)
+

(
y

1

)
+

(
y

2

)
+ . . .+

(
y

x

)
since any such linear combination is obtained by choosing i vectors out of the set of y vectors and
adding them together, where 0 ≤ i ≤ x.

Start building the matrix H by choosing the first n− k rows of H to be the rows of the matrix In−k.
This will guarantee that the columns of H are linearly independent, which we need for H to be a
parity check matrix. Furthermore, we are guaranteed that so far, we have n− k rows, no set of δ − 1
of which are linearly dependent.

Now we continue to add rows, subject to the condition that each vector of length n−k that we choose
as a row is not a linear combination of δ − 2 or fewer of the previous rows. At each stage we have an
i× (n− k) matrix in which no set of δ− 1 rows is linearly dependent. Then, for the (i+ 1)th row, we
can choose any vector that is not a linear combination of up to δ − 2 of the previous rows. That is,
for the (i+ 1)th row, we can choose any one of

2n−k −
[(

i

0

)
+

(
i

1

)
+ . . .+

(
i

δ − 2

)]
vectors. So, provided that

2n−k >

[(
i

0

)
+

(
i

1

)
+ . . .+

(
i

δ − 2

)]
,

we can extend our i × (n − k) matrix to a (i + 1) × (n − k) matrix in which no set of δ − 1 rows is
linearly depdendent.

Thus from an (n− 1)× (n− k) matrix, we can build an n× (n− k) matrix, in which no set of δ − 1
rows is linearly depdendent, provided that

2n−k >

[(
n− 1

0

)
+

(
n− 1

1

)
+ . . .+

(
n− 1

δ − 2

)]
.

This construction gives an n× (n− k) matrix H with linearly independent columns and in which no
set of δ − 1 rows is linearly dependent. Hence H can be used as a parity check matrix to give a linear
(n, k) code with distance at least δ. �

Corollary 3.6 If n 6= 1 and δ 6= 1 then there exists a linear code C with length n and distance at least
δ with

| C |≥ 2n−1(
n−1

0

)
+
(
n−1

1

)
+ . . .+

(
n−1
δ−2

) .
Proof: The Gilbert-Varshamov Bound guarantees the existence of a code C with length n, dimension
k (so |C| = 2k) and distance at least δ if(

n− 1

0

)
+

(
n− 1

1

)
+ . . .+

(
n− 1

δ − 2

)
< 2n−k.

41

By multiplying both sides of this inequality by 2k we see that a code C with length n, dimension k
and distance at least δ exists if

2k
[(
n− 1

0

)
+

(
n− 1

1

)
+ . . .+

(
n− 1

δ − 2

)]
< 2n.

Thus for any integers n, k and δ (n 6= 1, δ 6= 1), if

2k <
2n(

n−1
0

)
+
(
n−1

1

)
+ . . .+

(
n−1
δ−2

)
then the Gilbert-Varshamov Bound guarantees the existence of a code with 2k codewords. Let k′ be
the largest value of k for which this inequality is satisfied. Then

2k
′ ≥ 2n−1(

n−1
0

)
+
(
n−1

1

)
+ . . .+

(
n−1
δ−2

)
and there exists a code C with |C| = 2k

′
. �

Note that for a linear code C, we know that |C| is a power of 2. So if |C| ≥ m, where m is not a power
of 2, then we actually have |C| ≥ m′, where m′ is the smallest power of 2 that is greater than m.

Exercise 3.7 Does there exist a linear code of length n = 9, dimension k = 2 and distance δ = 5?

Exercise 3.8 Determine a lower and upper bound for the maximum number of codewords in a linear
code with n = 9 and δ = 5 (so k is not restricted).

Note that the lower bound on |C| given in Corollary 3.6 is a lower bound on the size of the biggest
code of length n, dimension k and distance δ. It is not a bound that can be used for every linear code.
For example, there exists a linear code of length n = 9 and distance δ = 5, for which |C| = 2.

C = {000000000, 111110000}

What was shown in Exercise 3.8 was that there exists a better code with length 9 and distance 5.
What the bounds tell us is that there must exist such a code with at least 4 codewords, and possibly
that there exists such a code with 8 codewords.

42

3.2 Perfect codes

In the previous section we saw several bounds on the possible number of words in codes. Here we
describe an important class of codes in which one of these bounds is attained.

Definition 3.9 A code C of length n and odd distance δ = 2t+ 1 is called a perfect code if C attains
the Hamming bound given in Theorem 3.2. That is, C is perfect iff

| C |= 2n(
n
0

)
+
(
n
1

)
+ . . .+

(
n
t

) .
There are not very many perfect codes, but ones that do exist are very useful. The main problem in
finding perfect linear codes is that |C| is a power of 2, so the expression(

n

0

)
+

(
n

1

)
+ . . .+

(
n

t

)
must also be a power of 2.

Example 3.10 Let t = 0. Then

(
n

0

)
= 1 = 20, so |C| = 2n(

n
0

) = 2n. The only code with 2n codewords

and length n is Kn, so Kn is a perfect code. (Of course, this code provides no error detection or
correction.)

Example 3.11 Similarly, we can show that there is a perfect code of length 2t+ 1 and distance 2t+ 1
with 2 codewords: one codeword is the zero word, and the other is the word containing all 1s.

The codes from the two previous examples are not particularly interesting, and are called the trivial
perfect codes.

In Exercise 3.4 we showed that there exists a perfect linear code with n = 7 and δ = 3. It has 16
codewords. (Note that this code is the code discussed at the end of Subsection 2.9.)

Exercise 3.12 The Golay code is a perfect code with n = 23 and δ = 7. Show that such a code may
exist, and find the number of codewords in it.

43

The possible lengths and distances for a perfect code were determined by Tietavairen and van Lint in
1963. They showed that:

Theorem 3.13 If C is a non-trivial perfect code of length n and distance δ = 2t+1 then either n = 23
and δ = 7, or n = 2r − 1 for some r ≥ 2 and δ = 3.

Note that Theorem 3.13 does not state that every code meeting those requirements will be perfect,
just that every perfect code must satisfy those requirements.

Suppose C is a linear code of length n and distance δ = 2t + 1. By Theorem 1.47 C will correct all
error patterns of weight less than or equal to t. Thus every word of length n and weight less than or
equal to t is a coset leader. There are exactly(

n

0

)
+

(
n

1

)
+ . . .+

(
n

t

)
such words, which is precisely the number of cosets if the code is perfect. Hence we have the following.

Theorem 3.14 If C is a perfect code of length n and distance δ = 2t+ 1 then C will correct all error
patterns of weight less than or equal to t, and no other error patterns.

Definition 3.15 A perfect code which corrects all error patterns of weight less than or equal to t is
called a perfect t-error correcting code. From Theorem 3.13, the only possible values for t are t = 1
and t = 3.

3.3 Extended codes

Sometimes, increasing the length of a code by one digit or a few digits gives a new code with improved
error detection or correction, which justifies the lower information rate.

Definition 3.16 Let C be a linear code of length n. The code C∗ of length n + 1, formed from C
by adding one extra digit to each v ∈ C in order to make each v∗ ∈ C∗ have even weight is called an
extended code of C.

Note that since C is a linear code, C∗ is also a linear code.

Example 3.17 At the start of our discussions on coding theory, we formed extended codes of K2 and
K3 by adding a single parity check digit to the end of each codeword so that each codeword had even
weight.

Theorem 3.18 Suppose that we form an extended code C∗ by adding a digit to the end of each
codeword of a linear code C. If the original code C has a k×n generating matrix G then the extended
code C∗ has a k × (n+ 1) generating matrix

G∗ =
(

G b
)
,

where the last column b of G∗ is appended so that each row of G∗ has even weight.

44

A parity check matrix for C∗ can be constructed from G∗ using Algorithm 2.13. However, the following
theorem provides a quicker method to find a parity check matrix for C∗.

Theorem 3.19 If H is a parity check matrix for C, then a parity check matrix for C∗ is given by

H∗ =

(
H j
0 1

)
,

where j is a column containing all 1s.
Proof: We have that H is an n×(n−k) matrix with rank (n−k). Hence H∗ is an (n+1)×(n+1−k)
matrix with rank (n− k + 1). Moreover,

G∗H∗ =
(

G b
)(H j

0 1

)
=
(

GH Gj + b
)
.

Now GH = 0 and Gj sums the ones in each row of G, so from the definition of b it follows that
Gj + b = 0. �

Exercise 3.20 Let C be the linear code with generating matrix G and parity check matrix H, where

G =

 1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

 and H =

1 0
0 1
1 1
1 0
0 1

 .

Find G∗ and H∗ for the extended code C∗.

45

If C is an (n, k, δ) linear code, what can be said about the length, dimension, distance and rate of the
extended code C∗?

The length and dimension of C∗ are (n + 1) and k, respectively. Thus, the rate of C∗ is k/(n + 1).
Notice that C∗ is a slightly less efficient code than C since

k

n
>

k

n+ 1
.

Let v ∈ C be a nonzero codeword of minimum weight in C. Thus δ = wt(v). If v∗ ∈ C∗ is the
codeword corresponding to v ∈ C, then wt(v∗) = wt(v) if wt(v) is even, and wt(v∗) = wt(v) + 1 if
wt(v) is odd. Hence if C has odd distance δ, then the distance of C∗ is δ+ 1, whereas if δ is even, then
the distance of C∗ is still δ. Thus an extended code is only useful when the distance of the original
code is odd, in which case the extended code corrects no more errors than the original code, but it
detects one more error.

When forming an extended code, there is no particular reason to add the extra digit to the end of
each original codeword. A code with similar properties can be constructed by inserting an extra digit
in any particular position in each codeword (as long as it is the same position in each codeword).

Exercise 3.21 Let C be the linear code C = {000000, 111000, 000111, 111111}. Form an extended
code C∗ by adding a parity check digit to the start of each codeword of C. A generating matrix and
parity check matrix for C are:

GC =

(
1 1 1 0 0 0
0 0 0 1 1 1

)
HC =

1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1

 .

Describe a generating matrix and parity check matrix for C∗ in terms of GC and HC . What are the
length, dimension, distance and information rate for each of the two codes?

46

3.4 The (a | a+ b) construction

Given two codes of length n, we can combine these to form a new code of length 2n with good error
correcting properties.

Example 3.22 Consider the following two codes of length n = 4:

Code A {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}
Code B {0000, 1111}.

Define a new code C with words of length 8. The first four bits of each new codeword are a codeword
a of A, and the last four bits of each codeword are obtained by adding to a a codeword b of B. Thus
for each a ∈ A, there will be two new codewords in C (as there are two codewords in B), each of the
form a | a+ b. The new code C is:

a | a+ 0000 a | a+ 1111
00000000 00001111
00110011 00111100
01010101 01011010
01100110 01101001
10011001 10010110
10101010 10100101
11001100 11000011
11111111 11110000

Theorem 3.23 Let A be an (n, kA, δA) linear code, B be an (n, kB, δB) linear code and let δ be the
smaller of 2δA and δB. Then the code C whose codewords are all the binary words of the form (a | a+ b),
where a ∈ A and b ∈ B, is a (2n, kA + kB, δ) linear code.

Proof: The length of code C is clearly 2n. Code A contains 2kA codewords and code B contains 2kB

codewords, so the code C contains 2kA × 2kB = 2kA+kB codewords.

To verify that C has minimum distance δ = min{2δA, δB}, note firstly that C contains all codewords
of the form (a | a+ 0) for a ∈ A and all codewords of the form (0 | 0 + b) for b ∈ B. Hence, δ ≤
min{2δA, δB}. However, if C contains a nonzero codeword c = (a | a+ b), then either b = 0 and so
wt(c) ≥ 2δA, or b 6= 0 in which case

wt(c) = wt(a | a+ b) = wt(a) + wt(a+ b) = d(0, a) + d(a, b) ≥ d(0, b)

by the triangle inequality and so wt(c) ≥ δB. Thus in either case, wt(c) ≥ min{2δA, δB}. �

Example 3.24 In Example 3.22, the original codes A and B had n = 4, kA = 3, δA = 2, kB = 1 and
δB = 4. The resulting code C is an (8, 4, 4) code. If the two codes A and B are interchanged in the
construction, the resulting code is only an (8, 4, 2) code.

Theorem 3.25 If A is an (n, kA) code with generating matrix GA and parity check matrix HA, and
B is an (n, kB) code with generating matrix GB and parity check matrix HB, then a generatng matrix
GC and parity check matrix HC for the code C formed by the (a | a+ b) construction are

GC =

(
GA GA

0 GB

)
, HC =

(
HA HB

0 HB

)
.

47

Proof: Clearly, GC is a (kA + kB) × 2n matrix with rank kA + kB which generates C. HC is a
2n× (2n− kA − kB) matrix with linearly independent columns, and we have

GCHC =

(
GAHA + 0 GAHB + GAHB

0 + 0 0 + GBHB

)
= 0.

�

3.5 Hamming codes

Definition 3.26 A linear code of length n = 2r − 1, r ≥ 2, having a parity check matrix H whose
rows consist of all nonzero vectors of length r is called a Hamming code of length 2r − 1.

Example 3.27 One possibility for a parity check matrix H for a Hamming code of length 7 (so r = 3)
is:

H =

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

.

By Algorithm 2.13, a generating matrix G for a Hamming code of length 7 is therefore

G =

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

Thus the code has dimension 4 and contains 24 = 16 codewords. The distance of the code is δ = 3.
The information rate is 4/7.

An n×r matrix H whose rows are all the non-zero binary words of length r must contain each word of
weight one as a row and hence must have r linearly independent columns. Hence H is a parity check
matrix for some linear code and by definition this code is a Hamming code. Furthermore, there are
precisely 2r − 1 non-zero binary words of length r, so n = 2r − 1. Thus a Hamming code has length
n = 2r − 1 and has dimension n− r = 2r − 1− r, so it contains 22r−1−r codewords.

We can find the distance of any Hamming code. No row of H is the zero word, so no single row of H is
linearly dependent. No two rows of H are equal, so no two rows of H are linearly dependent. Thus C
has distance at least 3. But we can clearly choose three rows of H (say 100 . . . 0, 0100 . . . 0, 1100 . . . 0)
which form a linearly dependent set. Thus by Theorem 2.42, a Hamming code has distance δ = 3.

We can investigate the Hamming bound for any Hamming code. For n = 2r − 1 and δ = 3 = 2t + 1
(so t = 1), we have

2n(
n
0

)
+ . . .

(
n
t

) =
2n(

n
0

)
+
(
n
1

) =
22r−1

1 + n
=

22r−1

1 + 2r − 1
= 22r−1−r.

48

Putting together the previous few observations, Theorem 3.14 tells us that Hamming codes are perfect,
single-error correcting codes.

It is trivial to construct an SDA for a Hamming code. All error patterns of weight 1 are corrected,
so every word of length 2r − 1 and weight one must be a coset leader. If e is an error pattern then
eH sums the rows of the parity check matrix H corresponding to positions in which errors occurred.
Hence, since H has 2r − 1 rows, an SDA for a Hamming code must be given by:

coset leader syndrome
000. . . 0 000. . . 0
I2r−1 H

Example 3.28 For the Hamming code in Example 3.27, assume w = 1101001 is the received word.
The syndrome is wH = 011, which is the fourth row of H. Thus the coset leader is the fourth row of
I7, u = 0001000. We conclude that the most likely codeword is w + u = 1100001.

Exercise 3.29 Use the Hamming code in Example 3.27 to determine the most likely codeword cor-
responding to each of the received words w1 = 1101011 and w2 = 1111111.

A Hamming code of length 2r − 1 is a (2r − 1, 2r − 1 − r, 3) linear code. The advantage of using a
Hamming code of long length is that it has many codewords (the maximum number of codewords
possible for a given length and distance 3). However, every Hamming code is only 1-error correcting,
so they are not useful if there is a high probability of errors.

Since Hamming codes have distance 3 (odd), we can gain some extra error detection capability by
forming the extended Hamming code. The extended Hamming code of length 2r is a (2r, 2r − 1− r, 4)
linear code. They are 1-error correcting and 3-error detecting codes. The (8, 4, 4) extended Hamming
code was constructed in Example 3.22.

Definition 3.30 The dual of the Hamming code of length 2r − 1 is called the simplex code of length
2r − 1. It is a (2r − 1, r, 2r−1) linear code. A simplex code is an example of a constant-weight code,
since each nonzero codeword in a simplex code has weight 2r−1.

Exercise 3.31 Describe how you could generate the codewords in the simplex code of length 7.

49

3.6 Reed-Muller codes

These codes were introduced in the 1950s by I.S. Reed and D.E. Muller. One of these codes was used
by the Mariner 9 space probe to send pictures of Mars back to earth. Rather than maintaining a fixed
distance (and hence error correction capacity, as did the Hamming codes), Reed-Muller codes give an
increased distance as the length of codewords increases.

Mariner 9 mission to Mars

Launch: May 30, 1971
Arrival: Nov 13, 1971
Mass: 998 kilograms
Science instruments: Wide and narrow angle cameras with digital tape recorder, infrared spectrometer
and radiometer, ultraviolet spectrometer, radio occultation and celestial mechanics instruments.

Mariner 9 was launched successfully on May 30, 1971, and became the first artificial satellite of Mars
when it arrived on November 13, 1971 and went into orbit, where it functioned in Martian orbit for
nearly a year. Mariner 9 completed its final transmission on October 27, 1972.

Upon arrival, Mariner 9 observed that a great dust storm was obscuring the whole globe of the planet.
Ground controllers sent commands to the spacecraft to wait until the storm had abated, the dust had
settled, and the surface was clearly visible before compiling its global mosaic of high-quality images of
the Martian surface. The storm persisted for a month, but after the dust cleared, Mariner 9 proceeded
to reveal a very different planet than expected – one that boasted gigantic volcanoes and a grand
canyon stretching 4,800 kilometers across its surface. More surprisingly, the relics of ancient riverbeds
were carved in the landscape of this seemingly dry and dusty planet. Mariner 9 exceeded all primary
photographic requirements by photo-mapping 100 percent of the planet’s surface. The spacecraft also
provided the first closeup pictures of the two small, irregular Martian moons: Phobos and Deimos.

Mariner 9 had a radio transmitter with a power of only 20 watts, and was transmitting over a distance
of 84 million miles. Despite this, near-perfect pictures were obtained. Each picture transmitted by
Mariner 9 is made up of over half a million tiny picture elements forming a rectangular array. Each
picture element is a uniform shade of grey, the precise shade being specified by a 9-bit binary number.
Thus each picture was represented using 5,250,000 bits, in grey-scale. Given the large distances, low
power, poor reliability of electronics in the transmitter and receiver, and the general background noise
of space, many errors occurred in transmission. Hence it was necessary to perform extensive error
correction.

Each message was divided into packets of 6 bits, and then each string of 6 bits was encoded into a
32 bit word. Thus a picture represented by 5 and a quarter million bits was transmitted using over
5 times that number of bits. The encoding was done using the first-order Reed-Muller code of length
25, RM(1, 5). This is a (32, 6, 16) code, with 64 codewords, which can detect 15 errors and correct up
to 7 errors. The rate of the RM(1, 5) code is only 6/32. For each bit of information, it was necessary
to transmit more than 4 bits of redundant information. However, since errors were very likely, and
retransmission was not possible, this redundancy was necessary and the mission was a success.

Reed-Muller codes are linear codes of length 2m, for some integer m ≥ 0. The dimension of the code
(and hence the number of codewords) depends on the order r of the Reed-Muller code. The rth order
Reed-Muller code of length 2m will be denoted RM(r,m), where 0 ≤ r ≤ m. We give a recursive
definition of these codes.

50

Definition 3.32 Define the rth order Reed-Muller code of length 2m, denoted RM(r,m), as follows:

1. RM(0,m) is the linear code of length 2m consisting of the zero word and the all ones word.

2. RM(m,m) is the linear code of length 2m whose codewords are all the binary words of that
length, so RM(m,m) = K2m

.

3. RM(r,m) for 0 < r < m is obtained using the (a | a+ b) construction where A = RM(r,m− 1)
and B = RM(r − 1,m− 1).

Note that there are other ways to construct the Reed-Muller codes and you may have seen another
construction method for first-order Reed-Muller codes in MATH2302.

Example 3.33 The Reed-Muller codes of lengths 20, 21 and 22 are listed below.

m Reed-Muller codes of length 2m

0 RM(0, 0) = {0, 1}

1 RM(0, 1) = {00, 11}
RM(1, 1) = {00, 01, 10, 11}

2 RM(0, 2) = {0000, 1111}
RM(1, 2) = {(a | a+ b) | a ∈ {00, 01, 10, 11}, b ∈ {00, 11}}

= {0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100}
RM(2, 2) = K4

Using Theorem 3.25, we can give a recursive definition for a generating matrix of RM(r,m).

Definition 3.34 Let Gr,m be a generating matrix for RM(r,m).

1. For r = 0 we define G0,m =
(

1 1 . . . 1
)
, that is the 1× 2m matrix of ones.

2. For r = m, we define Gm,m =

(
Gm−1,m

0 . . . 01

)
.

3. For 0 < r < m, we define Gr,m =

(
Gr,m−1 Gr,m−1

0 Gr−1,m−1

)
.

Example 3.35 The generating matrices for some small Reed-Muller codes are given below.

G0,0 =
(

1
)

G0,1 =
(

1 1
)

G1,1 =

(
1 1
0 1

)

G0,2 =
(

1 1 1 1
)

G1,2 =

 1 1 1 1
0 1 0 1
0 0 1 1

 G2,2 =

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

51

Exercise 3.36 Determine a generating matrix for each of RM(1, 3) and RM(2, 3).

Note that RM(1, 3) is the (8, 4, 4) extended Hamming code that has appeared earlier in the course.

Exercise 3.37 State the length, dimension and distance of each of the Reed-Muller codes RM(r,m)
for m = 3.

Code
Length

Dimension

Distance

Theorem 3.38 The rth order Reed-Muller code RM(r,m) defined above has the following properties:

1. RM(r,m) has length 2m;

2. RM(r,m) has dimension k =
∑r

i=0

(
m
i

)
;

3. RM(r,m) has distance δ = 2m−r;

4. RM(r − 1,m) is contained in RM(r,m), where r > 0;

5. the code RM(m− 1− r,m) where r < m is the dual of the code RM(r,m).

The proofs of these claims are by induction and may appear in your tutorial problems or on an
assignment.

The rate of RM(r,m) gets very small as m gets large. However, the distance is very large for the
length of the code, so these codes are useful in situations where errors are likely and when error
detection/correction is very important.

52

3.7 Decoding of first-order Reed Muller codes

There is a fast decoding algorithm for first-order Reed-Muller codes, based on the recursive nature of
these codes. The proof that this algorithm works is beyond the scope of this course. The algorithm
uses some matrix trickery (Fast Hadamard Transform) to identify the nearest codeword, rather than
working with syndromes and coset leaders.

Definition 3.39 The Kronecker product of two matrices A and B is defined by

A×B = (aij B);

that is, entry aij of matrix A is replaced by the matrix aijB.

Example 3.40 Let L =

(
1 1
1 −1

)
and let In be the n× n identity matrix. Then

I2 × L =

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 and L× I2 =

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

Definition 3.41 We define a series of matrices based on the matrix L from Example 3.40. Let m be
a positive integer. For i = 1, 2, . . . ,m, we define the matrix Li

m as

Li
m = I2m−i × L× I2i−1 .

Example 3.42 Let m = 2. Then we have constructed the two matrices L1
2 and L2

2 in Example 3.40
since

L1
2 = I2 × L× I1 = I2 × L

and L2
2 = I1 × L× I2 = L× I2

Exercise 3.43 Determine the matrix L1
3.

53

The matrices L2
3 and L3

3 are given here for your reference.

L2
3 = I2 × L× I2 L3

3 = I1 × L× I4

=

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1

=

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

Before giving the decoding algorithm, recall that to write a natural number x in binary representation
with low order digits first, you write

x = α02
0 + α12

1 + α22
2 + · · ·+ αi2

i

where i is the largest value such that 2i ≤ x and each αj ∈ {0, 1}, and then the binary representation
of x is α0α1α2 . . . αi.

The following decoding algorithm incorporates both error detection/correction and the recovery of the
intended message word, so it takes a received word of length 2m and returns a message word of length
m+ 1.

Algorithm 3.44 Decoding RM(1,m) Suppose w is the received word and G1,m is the generating
matrix for the RM(1,m) code.

1. Replace each 0 in w by −1 to form the word w.

2. Calculate w1 = wL1
m and then for each i = 2, 3, . . . ,m calculate wi = wi−1L

i
m.

3. Determine the position j of the largest component (in absolute value) of wm, where position is
measured from left to right and counted from 0 to 2m − 1.

4. Let v(j) be the binary representation of j (low order digits first).

If the jth component of wm is positive, then the most likely intended message word is (1, v(j)). If the
jth component is negative, then the most likely intended message word is (0, v(j)).

Example 3.45 A message has been encoded using the code RM(1, 3). Determine the most likely
intended message word if we receive the word w = 10101011.

We apply Algorihtm 3.44, and write our vectors using commas for clarity.

Convert w to w = (1,−1, 1,−1, 1,−1, 1, 1). Compute

w1 = wL1
3 = (0, 2, 0, 2, 0, 2, 2, 0)

w2 = w1L
2
3 = (0, 4, 0, 0, 2, 2,−2, 2)

w3 = w2L
3
3 = (2, 6,−2, 2,−2, 2, 2,−2)

The largest component of w3 is 6, occurring in position 1. Since v(1) = 100 and 6 > 0, the presumed
message word is 1100 (with corresponding codeword 10101010).

54

Exercise 3.46 A message has been encoded using the code RM(1, 3). Apply Algorithm 3.44 to
determine the most likely transmitted codeword if we receive the word w = 10001111.

3.8 The Extended Golay Code

The Voyager space mission (Voyager 1 was launched on 1 September 1977 and Voyager 2 was launched
on 20 August 1977) successfully explored the planets Jupiter, Saturn, Uranus and Neptune and the two
spacecraft continue their exploration as they move towards interstellar space. The Galileo spacecraft
was launched on 18 October 1989, entered into orbit around Jupiter in 1995, and conducted a thorough
exploration of Jupiter and its moons before making a mission-ending plunge into the planet in 2003. To
send data back to Earth, each of these spacecraft used a pair of codes, one of which was the Extended
Golay Code (a three error correcting code).

If we take the first-order Reed-Muller code RM(1, 3) and rearrange the bits in each codeword into
the order x4x6x3x2x1x5x7x8, then we obtain the codewords of an equivalent code A with generating
matrix

GA =

1 1 1 1 1 1 1 1
1 1 0 1 0 0 0 1
1 0 1 0 0 0 1 1
0 1 0 0 0 1 1 1

 .

If we then reverse the order of the first seven bits of each codeword of A, we obtain a code B which is
still equivalent to RM(1, 3). A generating matrix for B is

GB =

1 1 1 1 1 1 1 1
0 0 0 1 0 1 1 1
1 0 0 0 1 0 1 1
1 1 0 0 0 1 0 1

 .

We can then use codes A and B to construct two new important codes (first published in 1949). The
construction is similar to the (a | a+ b) construction given earlier.

55

Definition 3.47 The extended Golay code is the code whose codewords are all of the binary words
which can be written in the form

(a1 + b | a2 + b | a1 + a2 + b) ,

where a1, a2 ∈ A and b ∈ B. Equivalently, each codeword in the extended Golay code can be written
as the sum of three binary words

(a1 | 0 | a1) + (0 | a2 | a2) + (b | b | b) .

If GA is a generating matrix for code A and GB is a generating matrix for code B then a generating
matrix for the extended Golay code is the 12× 24 array

G =

 GA 0 GA

0 GA GA

GB GB GB

 .

Of more use is the following version of the generating matrix, which is in standard form.

Definition 3.48 Let B be the 12× 12 matrix:

B =

1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 1 1 1
0 0 1 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 1
1 0 1 1 0 1 1 1 0 0 0 1
0 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0

.

and let G be the 12× 24 matrix G = (I12 B). The linear code C24 having G as generating matrix is
the extended Golay code, which we will denote C24.

Note that if B1 is the 11× 11 matrix obtained from B by deleting the last row and column, then B1

has a cyclic left-shift structure. Note also that the positions of the ones in the first 11 places of the
first row correspond to the quadratic residues mod 11 (including 0). Also, note that BT = B.

56

Theorem 3.49 (Properties of C24) We note the following important facts about C24.

1. C24 has length 24 and dimension 12, with |C24| = 212 = 4096.

2. C24 has parity check matrix H =

(
B
I12

)
.

3. Another parity check matrix for C24 is H′ =

(
I12

B

)
.

4. Another generating matrix for C24 is G′ =
(

B I12

)
.

5. C24 is self-dual, so C⊥24 = C24.

6. The distance of C24 is 8.

7. C24 is a 3-error correcting code.

8. The weight distribution table for the codewords of C24 is:

wt 0 4 8 12 16 20 24
words 1 0 759 2576 759 0 1

Proof of (2): H is a 24× 12 matrix with linearly independent columns, and

GH =
(

I12 B
)(B

I12

)
= B + B = 0.

Proof of (3): Note that BB = I12. Thus GH′ =
(

I12 B
)(I12

B

)
= I2

12 + B2 = I12 + I12 = 0.

Proof of (4): The new generating matrix has the correct number of rows and columns, and rows
are linearly independent. Also, we have G′H′ = 0.

Proof of (5): Note that IT = I, BT = B and that every row of G has even weight. Hence GGT = 0.

Proof of (6): There are three steps:

I. Proof that if w ∈ C, then 4 | wt(w):
Let ri denote row i of G. Any codeword w can be expressed as the sum of up to 12 rows of G, so
w = ri1 + . . .+ rim , where m ≤ 12.
Perform induction on m:

If m = 1 then wt(w) = wt(ri1) = 8 or 12, as can be seen from G.

If m ≥ 1 then assume the hypothesis is true for m and consider m+ 1.
We know w = (ri1 + . . . + rim) + rim+1 = v + rim+1 , where v is a codeword which is a sum of m rows
of G and by our hypothesis 4 | wt(v). Since the rows of G are mutually orthogonal, v and rim+1 are
orthogonal. Hence v and rim+1 have 2x ones in common. Therefore

wt(w) = wt(v) + wt(rim+1)− 2(2x).

57

Hence 4 | wt(w).
So, by induction, statement I is true.

II. Proof that the distance of C24 = 4 or 8:
Since there are rows of G with weight 8, d(C24) ≤ 8. Clearly, the distance of C24 ≥ 1, so the result
follows from I.

III. Proof that the distance of C24 = 8:
Suppose we have a codeword w of weight 4. Then, using our two generating matrices,

w = u1 (I12 B) = u2 (B I12)

for some u1 and u2. Write w = [w1, w2] where w1 and w2 have length 12. Hence one of these has
weight ≤ 2. But w1 = u1 and w2 = u2. So one of u1 or u2 has weight ≤ 2. Thus w is the sum of either
1 or 2 rows of a generating matrix. However, the sum of any 2 rows of B has weight at least 6. Thus,
as B forms part of the generating matrix concerned, wt(w) ≥ 6. Thus there are no words of weight 4,
so the distance of C24 = 8. �

Proof of (7): Follows from (6).

Explanation of (8): The sum of all rows of G is 11 . . . 1, so 11 . . . 1 ∈ C. Hence the number of
words of weight k equals the number of words of weight 24− k. Hence it is easy to verify some of the
entries in the weight table for C24. Clearly, there is one word of weight zero and one word of weight
24. There are no words of weight 4 (as δ = 8), so there are no words of weight 20.

3.9 Decoding the Extended Golay Code

We now define an algorithm for IMLD for C24. Throughout this section, we use the following notation:
w Received word
v Closest codeword to w
u Error pattern (u = v + w)

and we assume that message words of length 12 have been encoded using the generating matrix
G = (I12 B).

Our aim is to determine the coset leader u of the coset containing w without having to refer to the
SDA of C24. Since C24 has distance 8, every error pattern of weight less than or equal to 3 must be a
coset leader, so suppose we have an error pattern u where wt(u) ≤ 3. Write u = [u1, u2] where u1 and
u2 each have length 12.

As wt(u) ≤ 3, we must have either wt(u1) ≤ 1 or wt(u2) ≤ 1. Let H1 be the parity check matrix

H1 =

(
I12

B

)
.

Then we have the syndrome s1 = wH1 = uH1 = u1I12 + u2B = u1 + u2B.

If wt(u2) = 0 then s1 = u1 so wt(s1) ≤ 3 (as wt(u1) ≤ 3).
If wt(u2) = 1 then s1 = u1+ (1 row of B), so s1 is a row of B with at most 2 digits changed (as
wt(u1) ≤ 2).

Similarly, let H2 be the parity check matrix

H2 =

(
B
I12

)
.

58

In this case we have the syndrome s2 = wH2 = uH2 = u1B + u2I12 = u1B + u2.

If wt(u1) = 0 then s2 = u2 so wt(s2) ≤ 3 (as wt(u2) ≤ 3).
If wt(u1) = 1 then s2 = u2+ (1 row of B), so s2 is a row of B with at most 2 digits changed (as
wt(u2) ≤ 2).

In any case, if u has weight at most 3 then it is easily identified, since at most 3 rows of one of the
two parity check matrices can be found to add to the corresponding syndrome. There are several
possibilities corresponding to the possible weights of u1 and u2.

• If wt(s1) ≤ 3 then we have u = [u1, 0]. (Here wt(u2) = 0.)

• If wt(s2) ≤ 3 then we have u = [0, u2]. (Here wt(u1) = 0.)

• If wt(s1) ≥ 3 and wt(s2) ≥ 3, then we look for the row of B which is closest to s1 or s2 and use
this to calculate the error pattern u.

These possibilities can be used to find an algorithm for decoding. However, in the decoding process
we want to use only one parity check matrix. We will use H = H1, but noting that B2 = I12, we have

s2 = u1B + u2

= u1B + u2I12

= u1B + u2B
2

= (u1 + u2B)B

= s1B.

In the following algorithm, ei is the word of length 12 with a one in the ith position and zeros elsewhere.

Algorithm 3.50 IMLD for the Extended Golay Code, C24

1. Compute the syndrome s = wH = w

(
I12

B

)
.

2. If wt(s) ≤ 3 then u = [s, 0].

3. If wt(s+ bi) ≤ 2 for some row bi of B then u = [s+ bi, ei].

4. Compute the second syndrome sB.

5. If wt(sB) ≤ 3 then u = [0, sB].

6. If wt(sB + bi) ≤ 2 for some row bi of B then u = [ei, sB + bi].

7. If u is not yet determined, then more than 3 errors have occurred so request retransmission.

Of course, once u has been determined, w is decoded to w + u.

Algorithm 3.50 requires at most 26 weight calculations in the decoding procedure. Of course, as soon
as u has been determined, no further steps in the algorithm need to be applied.

59

Example 3.51 Decode the received word w = 101 111 101 111 010 010 010 010.

The syndrome is

s = wH = 101 111 101 111 + 001 111 101 110 = 100 000 000 001,

which has weight 2. Since wt(s) ≤ 3, we find that u = [s, 0] = [100 000 000 001, 0], and conclude that
v = w + u = 001 111 101 110 010 010 010 010 was the codeword sent.

Because G =
(

I12 B
)

is in standard form and any word in K12 can be encoded as a message (C24

has dimension 12), the actual message sent occurs in the first 12 digits of the corresponding codeword
v. Hence in the previous example, 001 111 101 110 was the message encoded and sent.

Example 3.52 Decode the received word w = 001 001 001 101 101 000 101 000.

The syndrome is

s = wH = 001 001 001 101 + 111 000 000 100 = 110 001 001 001,

which has weight 5. Proceeding to Step 3 of Algorithm 3.50, we compute

s+ b1 = 000 110 001 100

s+ b2 = 011 111 000 010

s+ b3 = 101 101 011 110

s+ b4 = 001 001 100 100

s+ b5 = 000 000 010 010

Then, since wt(s+ b5) ≤ 2, we have that

u = [s+ b5, e5] = [000 000 010 010, 000 010 000 000],

and conclude that v = w + u = 001 001 011 111 101 010 101 000 was the codeword sent.

Exercise 3.53 Decode the received word w = 000 111 000 111 011 011 010 000.

60

Note that since there are 2n−k = 212 = 4096 cosets and only
(
24
0

)
+
(
24
1

)
+
(
24
2

)
+
(
24
3

)
= 2325 cosets that

have unique coset leaders of weight 3 or less, the code C24 may correct some error patterns of higher
weight. We will discuss this further in a moment when we look at the report “Decoding the Golay
Code” by E.R.Berlekamp (obtained from the NASA website).

3.10 The Golay Code, C23

Definition 3.54 Another interesting 3-error-correcting code can be obtained by deleting the last digit
from each word in C24. This gives the Golay Code, C23.

It is easily seen that C24 is the extended code of C23.

Theorem 3.55 C23 has the following properties:

1. A generating matrix is (I12 B̂), where B = (B̂ k) and k = (11 . . . 10)T . (That is, B̂ is obtained
from the matrix B defined in the previous section by deleting the last column of B.)

2. C23 has length 23, dimension 12 (so 212 = 4096 codewords) and distance 7.

3. C23 is a perfect 3-error correcting code.

Proof of (3): There are 212 codewords and the entire vector space has 223 words. Since 223/212 = 211,
we must prove that there are exactly 211 words of distance ≤ 3 from a given codeword. But the number
of such words is:

1 +
(
23
1

)
+
(
23
2

)
+
(
23
3

)
= 1 + 23 + 23 · 11 + 23 · 11 · 7
= 2048 = 211.

Thus C23 is perfect. �

Thus C23 will correct all error patterns of weight 3 or less, and no other error patterns (Theorem 3.14).

Algorithm 3.56 IMLD for the Golay Code, C23

1. Form w∗ = w0 or w∗ = w1 so that w∗ has odd weight.

2. Decode w∗ to a codeword c∗ ∈ C24 using Algorithm 3.50.

3. Remove the last digit from c∗ to obtain a codeword c ∈ C23.

Both the Golay code and the extended Golay code are 3-error correcting. To verify that Algorithm
3.56 is a valid algorithm, we need to check that if v ∈ C23 is transmitted and w is received, where
d(v, w) ≤ 3, then d(v∗, w∗) ≤ 3 where v∗ ∈ C24 is the extension of v and w∗ is as defined in Step 1 of
Algorithm 3.56.
Suppose v ∈ C23 is the codeword corresponding to the received word w, so d(v, w) ≤ 3. Form w∗ by
adding a digit to the end of w such that wt(w∗) is odd. Let v∗ ∈ C24 be the extension of v ∈ C23.
Since v∗ ∈ C24, wt(v∗) is even. The difference between a word of odd weight and a word of even weight
must be odd, so

d(v∗, w∗) ∈ {1, 3, 5, 7, . . . }.
Also d(v∗, w∗) is either d(v, w) or d(v, w) + 1. Since d(v, w) ≤ 3, we conclude that d(v∗, w∗) ∈ {1, 3}
so Algorithm 3.50 can be applied to w∗ to find v∗ and hence Algorithm 3.56 can decode w to v.

61

Note that:

• As C23 is perfect, there is never a need for retransmission.

• If w is a codeword of C23, then the syndrome of w∗ is the last row of H. This case should be
checked before applying Algorithm 3.50.

The extended Golay code is a (24, 12, 8) code, hence providing 3 error correction (7 detection) and
with rate 12/24. The Golay code is a (23, 12, 7) code with 3 error correction (6 detection) and rate
12/23.

We have now met all of the non-trivial perfect binary codes: the Hamming codes and the Golay code.
There are no others.

62

4 Cyclic Codes

4.1 Introduction to burst errors

Until now, we have assumed that errors occuring in transmission over a binary symmetric channel are
randomly distributed. However, in some channels, it may be likely that errors occur very close to each
other. For example, a compact disc may become scratched, or solar radiation may cause a group of
errors which occur close together. In this section we consider codes that are designed to cope with this
type of error pattern.

Definition 4.1 Let v be a word of length n. The cyclic shift of v, denoted γ(v), is the word obtained
by moving the last digit of v to the beginning.

Definition 4.2 A burst is a word that begins and ends with a one or is the empty word. A burst error
pattern is a word of the form 0 . . . 0b0 . . . 0 where b is a burst. (Note that the 0s do not necessarily
occur).

Let Bn(x) denote the set of all burst error patterns belonging to Kn with burst of length at most x,
and let C(Bn(x)) denote the set of all cyclic shifts of words in Bn(x). The words in C(Bn(x)) are
called cyclic burst error patterns.

Note that the burst 0 . . . 0 is defined to have length 0, so 0 . . . 0 ∈ Bn(x) always.

Exercise 4.3 Determine B4(3) and C(B4(3)).

Example 4.4 Consider the words v = 1101010, w1 = 0100010 and w2 = 0011010. If we transmitted
v and w1 was received, then the error pattern e1 = 1001000 occurred, which has weight 2 and burst
error length 4. If we transmitted v and w2 was received, then the error pattern e2 = 1110000 occurred,
which has weight 3 and burst error length 3.
Thus, if we transmit v and if errors occur randomly on the channel, then w1 is more likely than w2 to
be the received word. However, if we transmit v and if errors occur in bursts on the channel, then w2

is more likely than w1 to be the received word.

When applying MLD to a linear code with the assumpution of random errors, we constructed an SDA
with coset leaders that were the words of least weight in the cosets, and said that such a code is t-error
correcting precisely when all the words of weight at most t are in different cosets of the code but not
all of the words of weight at most t + 1 are in different cosets. If errors are likely to occur in bursts,
then in applying MLD we construct an SDA with coset leaders that are the error patterns with burst
of least length in each coset.

68

Definition 4.5 A code C is an x burst error correcting code if all the words in Bn(x) are in different
cosets of C, but not all those in Bn(x+ 1). An x cyclic burst error correcting code is defined similarly:
all words in C(Bn(x)) must be in different cosets, but not all of the words in C(Bn(x + 1)) are in
different cosets.

In general, if C is t-error correcting and x burst error correcting then t ≤ x.

Exercise 4.6 Show that it is impossible to have a 3-error correcting linear (15,9) code, but that it
may be possible to have a 3 cyclic burst error correcting linear (15,9) code.

Lemma 4.7 If C is a t burst error correcting code of length n and dimension k, then t ≤ n− k.

Proof: C must correct all errors whose non-zero entries occur in the first t places. There are 2t of
these, all of which must be in different cosets. But there are 2n−k cosets in all.

Hence 2t ≤ 2n−k and so t ≤ n− k. �

Cyclic linear codes are a large family of codes that have a straightforward decoding algorithm for
correcting cyclic burst error patterns. In order to define cyclic linear codes, we need to first remind
ourselves of the connection between polynomials over K and words of Kn.

4.2 Polynomials over K and words of Kn

Recall the following facts from the cryptography part of the course.

Definition 4.8 A polynomial of degree n over K is a polynomial

α0 + α1x+ . . .+ αn−1x
n−1 + αnx

n,

where the coefficients αi ∈ K and αn 6= 0. The set of all polynomials over K is denoted K[x].

Polynomials over K are added and multiplied in the usual way, with a bit of care. For example,
xk +xk = (1 + 1)xk = 0xk = 0, so the degree of f(x) + g(x) is not necessarily equal to the maximum of
the degrees of f(x) and g(x). Thus for f(x), g(x) ∈ K[x], we have (f(x) + g(x))2 = (f(x))2 + (g(x))2.

Definition 4.9 Division Algorithm If f(x), p(x) ∈ K[x] with p(x) 6= 0 then there exist unique
polynomials

q(x), r(x) ∈ K[x] such that f(x) = q(x)p(x) + r(x),

with r(x) = 0 or degree(r(x)) < degree(p(x)), and r(x) is unique. As usual, q(x) is called the quotient
and r(x) is called the remainder.

69

Theorem 4.10 Given a polynomial p(x) of degree n, by associating f(x) with the remainder r(x)
where

f(x) = q(x)p(x) + r(x),

each polynomial f(x) corresponds to a unique polynomial of degree at most n−1, and hence to a unique
word of length n.

Thus, given any polynomial f(x) ∈ K[x], we can represent f(x) by a unique representative of degree
less than n from the set of residue (equivalence) classes of K[x] modulo p(x). We say that f(x) equals
r(x) modulo p(x), and write f(x) = r(x) mod p(x).

We can avoid polynomial long division when finding r(x) mod p(x) in the following way. If p(x) =
p0 + p1x+ . . .+ pn−1x

n−1 + xn, then we can substitute for xn in f(x) using

xn = p0 + p1x+ . . .+ pn−1x
n−1 mod p(x).

Definition 4.11 The polynomial f(x) = α0 + α1x + . . . + αn−1x
n−1 of degree n − 1 over K may be

regarded as the word v = α0α1 . . . αn−1 of length n in Kn.

If we fix the length n of words we wish to consider, then every word of length n corresponds to exactly
one polynomial over K of degree less than or equal to n− 1. The word with all digits 0 is represented
by the zero polynomial. Thus any code C of length n can be represented as a set of polynomials over
K of degree at most n− 1.

Definition 4.12 We shall use p(x) = 1 + xn to make the correspondence between polynomials and
words of length n. Hence xn = 1 (mod p(x)), and the correspondence between polynomials and words
of length n is easily made.

4.3 Introduction to cyclic codes

Recall that if v is a word of length n, then the cyclic shift of v, denoted γ(v), is the word obtained by
moving the last digit of v to the beginning.

Definition 4.13 A code C is a cyclic code if (v ∈ C) implies that (γ(v) ∈ C).

Example 4.14

• {000, 110, 101, 011} is both cyclic and linear.

• {000, 100, 011, 111} is linear but not cyclic.

• {010, 100, 001} is cyclic but not linear.

Exercise 4.15 Find the smallest cyclic linear code containing the word 001.

70

Note that the cyclic shift preserves weight of words, so wt(v) = wt(γ(v)).

The Hamming codes are equivalent to cyclic codes. This is easy to prove for small Hamming codes,
but is harder to prove in general.

We are using p(x) = 1 + xn to make the correspondence between polynomials and words of length n.
The main reason for this is that (for cyclic codes) if the word v is represented by the polynomial f(x)
then the word γ(v) is represented by the polynomial xf(x) mod (xn + 1).

Example 4.16 Let f(x) = 1 + x + x5 and use p(x) = 1 + x7 to make the correspondence between
polynomials and words of length 7. Then

f(x) = 1 + x+ x5 ↔ 1100010 = w

xf(x) = x+ x2 + x6 ↔ 0110001 = γ(w)

x2f(x) = 1 + x2 + x3 ↔ 1011000 = γ(γ(w))

Definition 4.17 A set of polynomials of degree less than n corresponds to a linear code if it is closed
under addition. Now, we can say that a set of polynomials modulo p(x) = 1 + xn corresponds to a
cyclic code if the set is closed under multiplication by x.

If we consider the set of polynomials mod (xn + 1), then the set of all polynomials of degree at most
n−1 forms a ring with the usual definition of addition and multiplication (over K). Recall that a ring
(R,+, ·) is a set R with two operations, addition and multiplication, such that (R,+) is an abelian
group and the ring has associative multiplication that is left and right distributive over addition. Thus,
a ring (R,+, ·) satisfies the following properties:

• Closure under addition: ∀a, b ∈ R, a+ b ∈ R;

• Additive identity: ∃ 0 ∈ R such that ∀a ∈ R, a+ 0 = 0 + a = a;

• Additive inverse: ∀a ∈ R, ∃ − a ∈ R such that a+ (−a) = (−a) + a = 0;

• Associative addition: ∀a, b, c ∈ R, a+ (b+ c) = (a+ b) + c;

• Commutative addition: ∀a, b ∈ R, a+ b = b+ a;

• Closure under multiplication: ∀a, b ∈ R, a · b ∈ R;

• Associative multiplication: ∀a, b, c ∈ R, a · (b · c) = (a · b) · c;

• Distributivity: ∀a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c).

Definition 4.18 An ideal in a ring R is a subset I of R such that

(i) I is a subgroup of the additive group of R; and

(ii) for every i ∈ I and r ∈ R we have ir ∈ I and ri ∈ I, so that I is closed under multiplication by
any element of R.

71

A cyclic linear code corresponds to an ideal in the ring of polynomial residues mod (xn + 1).

From now on, we shall refer to the set of polynomials corresponding to a code as the code itself and
will use polynomial notation and usual bitwise notation interchangably.

Definition 4.19 Let C be a cyclic code of length n. A generator g(x) for C is a nonzero polynomial
in C of least degree.

Exercise 4.20 Let C be the cyclic linear code C = {0000, 1010, 0101, 1111}, so

C = {0, 1 + x2, x+ x3, 1 + x+ x2 + x3}.

By definition, 1+x2 = 1010 is a generator for C. Show that every word in C is a multiple mod (1+x4)
of this generator.

Theorem 4.21 Let C 6= {0} be a cyclic linear code of length n. Then:

1. C has a unique generator g(x); and

2. every polynomial f(x) ∈ C can be written in the form f(x) = q(x)g(x) for a unique q(x) ∈ K[x],
where deg q(x) ≤ n− 1− deg g(x).

Proof of (1): C is cyclic and contains at least one nonzero polynomial, so we can select from C a
nonzero polynomial g(x) of smallest degree, say k. By definition, g(x) is a generator for C.

Assume C contains another polynomial g1(x) of degree k. Since xk + xk = 0, we have g(x) + g1(x) has
degree less than k. But as C is linear, g(x) + g1(x) ∈ C. Thus, as g(x) has minimal degree, we must
have g(x) + g1(x) = 0, so g(x) = g1(x) and C has a unique generator.

Proof of (2): Now let f(x) be any polynomial in C. Thus by the Division Algorithm there exist
unique polynomials q(x) and r(x) in K[x] such that

f(x) = q(x)g(x) + r(x),

where r(x) = 0 or the degree of r(x) is less than the degree of g(x). Since C is cyclic and linear,
q(x)g(x) ∈ C. Since C is linear and hence closed under addition, r(x) = f(x) + q(x)g(x) ∈ C. By
the Division Algorithm, degree r(x) is less than degree g(x), and by minimality of the degree of the
generator g(x), it follows that r(x) = 0, so f(x) = q(x)g(x). Thus deg f(x) = deg q(x) + deg g(x), and
since f(x) ∈ C, we have deg f(x) ≤ n− 1. Hence deg q(x) ≤ (n− 1)− deg g(x). �

72

Exercise 4.22 Find the smallest linear cyclic code C of length 6 containing x2 +x5. Find a generator
g(x) for C, and represent each word in C as a multiple of g(x).

4.4 Generating matrices for linear cyclic codes

We now turn our attention to finding a generating matrix for a linear cyclic code C.

Theorem 4.23 If a linear cyclic code C of length n has generator g(x) of degree n− k, then
{g(x), xg(x), . . . , xk−1g(x)} forms a basis for C and hence dimC = k.

Proof: First note that the polynomials g(x), xg(x), . . . , xk−1g(x) are all distinct modulo (1 + xn),
since each has degree one greater than its predecessor and xk−1g(x) has degree n−1. To see that these
polynomials form a basis for C, we must show that they both span C and are linearly independent.

To see that they span C, let f(x) ∈ C. Then by Theorem 4.21, f(x) = q(x)g(x) for some q(x) ∈ K[x]
where deg q(x) ≤ n− 1− deg g(x) so deg q(x) ≤ k − 1. Let

q(x) = q0 + q1x+ . . .+ qlx
l, where l ≤ k − 1

and q0, q1, . . . , ql ∈ K. Now g(x) has degree n− k, so using l = k− 1 (but noting that since l ≤ k− 1,
we may have qk−1 = 0), we have

f(x) = q(x)g(x)

= (q0 + q1x+ . . .+ qk−1x
k−1)g(x)

= q0g(x) + q1xg(x) + q2x
2g(x) + . . .+ qk−1x

k−1g(x).

Thus any f(x) ∈ C can be written as a linear combination of the elements of the set

{g(x), xg(x), . . . , xk−1g(x)}

so this set spans C.

73

To see that the set of polynomials is linearly independent, let

g(x) = α0 + α1x+ . . .+ αn−k−1x
n−k−1 + xn−k,

and associate with each polynomial in {g(x), xg(x), . . . , xk−1g(x)} the corresponding word of length n.
Writing these words as the rows of a matrix gives

α0 α1 α2 . . . αn−k−1 1 0 0 . . . 0
0 α0 α1 . . . αn−k−2 αn−k−1 1 0 . . . 0
0 0 α0 α1 . . . αn−k−2 αn−k−1 1 . . . 0
...

...
...

0 0 0 . . . α0 α1 . . . αn−k−2 αn−k−1 1

 .

It is clear from the form of the matrix (REF) that the rows are linearly independent and so
{g(x), xg(x), . . . , xk−1g(x)} is a linearly independent set.

Thus {g(x), xg(x), . . . , xk−1g(x)} is a basis for C and hence the dimension of C is k. �

Corollary 4.24 Let C be a linear cyclic code of length n with generator polynomial g(x) of degree
n− k. Then the k × n matrix

G =

g(x)
xg(x)
x2g(x)

...
xk−1g(x)

is a generating matrix for C.

Exercise 4.25 Let C be the linear cyclic code of length n = 7, with generator g(x) = 1 + x + x3.
Find a generating matrix for C.

Note that the generating matrix in the previous exercise is a generating matrix for the (7, 4, 3) Hamming
code.

The previous exercise shows one benefit of using a cyclic code. Rather than storing the entire generating
matrix for the code, it is only necessary to store the generator polynomial.

Let C be a linear cyclic code of length n and dimension k with generator g(x). The message word
a = a0a1 . . . ak−1 of length k to be encoded can be represented by the message polynomial a(x) =

74

a0 + a1x + · · · + ak−1x
k−1. Encoding using the generating matrix developed above then consists of

polynomial multiplication; that is, a(x) is encoded as a(x)g(x) to give the codeword c(x) of length n.

The inverse operation to polynomial multiplication is polynomial division. Thus, finding the message
a(x) corresponding to the codeword c(x) consists of dividing c(x) by g(x).

Exercise 4.26 Consider the linear cyclic code C from Exercise 4.25 with messages encoded using the
procedure above. Determine the codeword corresponding to the message word 1010. Determine the
message word corresponding to the codeword 1100101.

We can also find the generating matrix in standard form of a linear cyclic code.

Theorem 4.27 Let g(x) be the generator of a linear cyclic code C of length n. For n−k ≤ i ≤ n−1,
let ri be the binary word of length n − k corresponding to ri(x) = xi (mod g(x)). Then a generating
matrix for C is:

G =

Ik

∣∣∣∣∣∣∣
rn−k

...
rn−1

Proof: By the Division Algorithm, xi = q(x)g(x) + ri(x), so xi + ri(x) = q(x)g(x). Thus g(x)
divides xi + ri(x), so we have that xi + ri(x) is a polynomial corresponding to a codeword in C. Since
deg ri(x) < deg g(x) and deg xi ≥ deg g(x), we have xi + ri(x) 6= 0 and xi + ri(x) ∈ C. Indeed, these
words are linearly independent, as can be seen when they are listed in a matrix: rn−k

...
rn−1

∣∣∣∣∣∣∣ Ik

As this matrix has k linearly independent rows, each of which is a codeword of C, it follows that it is
a generating matrix for C. But C is cyclic, so we can perform a cyclic shift k times on this matrix.
Hence a generating matrix for C is:

G =

Ik

∣∣∣∣∣∣∣
rn−k

...
rn−1

�

75

Example 4.28 Find G in standard form for the linear cyclic code C of length 7 generated by
g(x) = 1 + x+ x3 (encountered in Exercise 4.25).

xn−k = x3 = 1 + x (mod g(x)) r3 = 110,
x4 = x(1 + x) = x+ x2 (mod g(x)) r4 = 011,
x5 = x(x+ x2) = x2 + x3 = 1 + x+ x2 (mod g(x)) r5 = 111,
x6 = x(1 + x+ x2) = x+ x2 + x3 = 1 + x2 (mod g(x)) r6 = 101.

Hence a generating matrix in standard form is:

G =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .

4.5 Finding a generator polynomial for a linear cyclic code

The following theorem shows how to find all linear cyclic codes of a given length, by determining which
polynomials are generators of a linear cyclic code of that length.

Theorem 4.29 The polynomial g(x) is a generator for a linear cyclic code of length n if and only if

g(x) | (1 + xn).

Proof: Assume that C is a linear cyclic code of length n with generator g(x). By the Division
Algorithm, there exist unique polynomials q(x) and r(x) such that

1 + xn = q(x)g(x) + r(x),

where r(x) = 0 or deg r(x) < deg g(x). Since algebra is done modulo (1 + xn) in C, we have
r(x) = q(x)g(x). Therefore r(x) ∈ C. By the minimality of the degree of the generator g(x), we must
have r(x) = 0. Thus 1 + xn = q(x)g(x), so g(x)|1 + xn.

Conversely, suppose that g(x)|1 + xn. If g(x) 6= 1 + xn, then g(x) has degree n − k, for some k,
0 < k ≤ n. Thus {g(x), xg(x), . . . , xk−1g(x)} is a linearly independent set (see Theorem 4.23). Define
C to be the span of {g(x), xg(x), . . . , xk−1g(x)}. Thus C is a linear code. To see that C is cyclic, let
f(x) be a linear combination of the above polynomials, so

f(x) = f0g(x) + f1xg(x) + f2x
2g(x) + · · ·+ fk−1x

k−1g(x).

Then
xf(x) = f0xg(x) + f1x

2g(x) + f2x
3g(x) + · · ·+ fk−2x

k−1g(x) + fk−1x
kg(x).

However,

xkg(x) = (1 + xn) + xkg(x) = q(x)g(x) + xkg(x) = (q(x) + xk)g(x), for some q(x)

since g(x) is a factor of 1 + xn. Clearly,

degree q(x) = n− degree g(x) = k,

so degree (q(x) + xk) ≤ k − 1. Therefore fk−1x
kg(x) is a linear combination of the polynomials in our

basis for C and so xf(x) ∈ C. Therefore, C is cyclic. �

Thus, to find all linear cyclic codes of a given length n, find all factors of 1 + xn, and each such factor
is a generator for a linear cyclic code of length n.

76

Definition 4.30 The linear cyclic code of length n generated by 1 is Kn, and the linear cyclic code
of length n generated by 1 + xn is {0}. These are called the improper cyclic codes. Other cyclic linear
codes of length n are called proper cyclic codes.

Definition 4.31 A polynomial p(x) ∈ K[x] is irreducible if p(x) = q(x)s(x) implies either q(x) or
s(x) has degree 0 (that is, the only factors of p(x) are 1 and itself).

To find all factors of 1 + xn, we first find all irreducible factors of 1 + xn, then we form all possible
products of these factors (except for the products 1 and 1+xn), then each such product is the generator
for a proper linear cyclic code of length n.

Finding all irreducible factors of 1 + xn is not necessarily easy. The task is simplified if we note the
following: if the coefficients of a polynomial sum to 0, then (x + 1) is a factor, and if the constant
coefficient of a polynomial is 0, then x is a factor. For reference, here is a table of all small-degree
irreducible polynomials in K[x].

degree irreducible polynomials
1 x, x+ 1
2 x2 + x+ 1
3 x3 + x2 + 1, x3 + x+ 1
4 x4 + x3 + x2 + x+ 1, x4 + x3 + 1, x4 + x+ 1

Exercise 4.32 Find all proper linear cyclic codes of length n = 3.

Note that if n is even (so n = 2y), then

1 + xn = 1 + x2y = (1 + xy)2.

Exercise 4.33 Determine the dimensions of all proper linear cyclic codes of length n = 6.

77

For reference, here are the factorisations of 1 + xn into irreducible polynomials for some small and
useful odd n:

1 + x = 1 + x

1 + x3 = (1 + x)(1 + x+ x2)

1 + x5 = (1 + x)(1 + x+ x2 + x3 + x4)

1 + x7 = (1 + x)(1 + x+ x3)(1 + x2 + x3)

1 + x9 = (1 + x)(1 + x+ x2)(1 + x3 + x6)

1 + x15 = (1 + x)(1 + x+ x2)(1 + x+ x4)(1 + x3 + x4)(1 + x+ x2 + x3 + x4)

1 + x23 = (1 + x)(1 + x+ x5 + x6 + x7 + x9 + x11)(1 + x2 + x4 + x5 + x6 + x10 + x11)

Note that the Golay code C23 is equivalent to the linear cyclic code with generator
1 + x2 + x4 + x5 + x6 + x10 + x11.

Exercise 4.34 Does there exist a linear cyclic code of length 15 and dimension 4?

Exercise 4.35 Does there exist a linear cyclic code of length 15 having 4 codewords?

4.6 Error detection and correction using cyclic codes

Cyclic codes have a straightforward error detection and correction algorithm for correcting cyclic burst
error patterns, so cyclic codes are normally used when the objective is to correct cyclic burst error
patterns. Examples of such codes are Reed-Solomon codes (used in CDs).

Definition 4.36 A definition of burst length in terms of polynomials is as follows.

• Suppose e(x) = xke1(x) for some k and for some polynomial

e1(x) = 1 + α1x+ α2x
2 + · · ·+ αm−1x

m−1 + xm.

Then the burst length of e(x) is deg e1(x) + 1 = m+ 1.

• e(x) has cyclic burst length l if the minimum degree of xke1(x) mod (1+xn) for k = 0, 1, . . . n−1
is l − 1.

78

Example 4.37 For the word e = 00010100 we have the polynomial e(x) = x3 + x5 = x3(1 + x2), so
we have k = 3 and e1(x) = 1 + x2. Thus e has burst length 2 + 1 = 3.

The word e = 1000110 has polynomial form e(x) = 1 + x4 + x5 with k = 0 and e1(x) = 1 + x4 + x5 so
e has burst length 6. However, x3(1 + x4 + x5) mod (1 + x7) = 1 + x + x3 (or equivalently 1101000)
so e has cyclic burst length 4.

As noted earlier, any linear cyclic code C with generator polynomial g(x) of degree n − k has a
generating matrix of the form:

G =

Ik

∣∣∣∣∣∣∣
rn−k

...
rn−1

where xi ≡ ri(x) (mod g(x)). Thus, by Algorithm 2.13, a parity check matrix is

H =

rn−k
rn−k+1

...
rn−1

In−k

 .

In Exercise 4.6 we showed that there may exist a linear code of length 15 and dimension 9 that is 3
cyclic burst error correcting (but not 3-error correcting). We now show that the linear cyclic code with
generator g(x) = 1 + x+ x2 + x3 + x6 is such a code.

Example 4.38 Let C be the cyclic linear code of length 15 with generator

g(x) = 1 + x+ x2 + x3 + x6 = (1 + x+ x2)(1 + x3 + x4).

A parity check matrix for C created using the above method is obtained as follows:

We have n− k = 6. Working modulo g(x) = 1 + x+ x2 + x3 + x6, we have:

x6 ≡ 1 + x+ x2 + x3 → r6 = 111100
x7 ≡ x+ x2 + x3 + x4 → r7 = 011110
x8 ≡ x2 + x3 + x4 + x5 → r8 = 001111
x9 ≡ x3 + x4 + x5 + (1 + x+ x2 + x3) =

1 + x+ x2 + x4 + x5 → r9 = 111011

and so on. We thus obtain the parity check matrix:

H =

1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
1 1 1 0 1 1
1 0 0 0 0 1
1 0 1 1 0 0
0 1 0 1 1 0
0 0 1 0 1 1
1 1 1 0 0 1

I6

79

Claim: The linear cyclic code of length 15 with generator g(x) = 1 + x + x2 + x3 + x6 is a 3 cyclic
burst error correcting code.

To prove this, we require all error patterns of length 15 with cyclic burst length at most 3 to have
different syndromes. The syndrome is the sum of the rows of H corresponding to the locations of the
ones in the error pattern. We require all these sums to be different.

The error pattern with cyclic burst length 0 belongs to the 0 coset (the code itself). Error patterns
with cyclic burst length 1 have syndromes equal to rows of H, all of which are different. Error patterns
with cyclic burst length 2 have syndromes equal to sums of 2 (cyclically) adjacent rows of H.
The error patterns with cyclic burst length 2 and their syndromes are:

error pattern syndrome error pattern syndrome
1 + x 100010 x8 + x9 011001
x+ x2 010001 x9 + x10 110000
x2 + x3 110100 x10 + x11 011000
x3 + x4 011010 x11 + x12 001100
x4 + x5 001101 x12 + x13 000110
x5 + x6 111010 x13 + x14 000011
x6 + x7 011101 1 + x14 111101
x7 + x8 110010

Error patterns with cyclic burst length 3 have syndromes equal to either the sum of 3 (cyclically)
adjacent rows of H or the sum of 2 rows of H which are the first and third rows in a set of 3
(cyclically) adjacent rows of H.

The error patterns with cyclic burst length 3 and their syndromes are:

error pattern syndrome error pattern syndrome
1 + x+ x2 101101 1 + x2 110011
x+ x2 + x3 101010 x+ x3 100101
x2 + x3 + x4 010101 x2 + x4 101110
x3 + x4 + x5 110110 x3 + x5 010111
x4 + x5 + x6 011011 x4 + x6 110111
x5 + x6 + x7 110001 x5 + x7 100111
x6 + x7 + x8 100100 x6 + x8 101111
x7 + x8 + x9 010010 x7 + x9 101011
x8 + x9 + x10 001001 x8 + x10 101001
x9 + x10 + x11 111000 x9 + x11 101000
x10 + x11 + x12 011100 x10 + x12 010100
x11 + x12 + x13 001110 x11 + x13 001010
x12 + x13 + x14 000111 x12 + x14 000101
1 + x13 + x14 111111 1 + x13 111110
1 + x+ x14 100011 x+ x14 011111

All of these 61 syndromes are different. So C is a 3 cyclic burst error correcting code.

As you can see from the above discussion, the creation and storage of an SDA can be costly. Luckily,
the structure of cyclic linear codes allows us to decode received words containing cyclic burst errors

80

without the need for an SDA.

In this decoding process, we use the parity check matrix of the form

H =

rn−k
rn−k+1

...
rn−1

In−k

 .

For a received word w with error pattern e, let w(x) and e(x) be the corresponding polynomials. For
0 ≤ i ≤ n−1, let wi and ei be the words corresponding to xiw(x) and xie(x) (mod 1+xn), respectively.
Let s = wH be the syndrome of w, and let si = wiH be the syndrome of wi for 0 ≤ i ≤ n− 1.

Theorem 4.39 Let C be a t cyclic burst error correcting linear cyclic code of length n and dimension
k (so t ≤ n− k). Let w + e be a codeword, where e ∈ C(Bn(t)). Then there exists an i, 0 ≤ i ≤ n− 1
such that si is a burst error pattern of length at most t and so e(x) = xn+k−isi(x) (mod 1 + xn).

Proof: Let w + e ∈ C, where e is a cyclic burst error pattern with burst of length at most t. Since
C is cyclic and w + e ∈ C, we have wi + ei ∈ C. Since wi + ei ∈ C, wi and ei are in the same coset of
C and hence

si = wiH = eiH.

Also, since t ≤ n− k (Lemma 4.7), it is clear that for some i, 0 ≤ i ≤ n− 1, the word ei has 0s in the
first k places. Now, since si = eiH and ei has zeros in the first k places, ei is of the form ei = [0, si].
Since ei is a cyclic burst error pattern with burst of length at most t, then so is si.

Since ei = [0, si], we have ei(x) = xksi(x). Thus e(x) = xn−iei(x) = xk+n−isi(x). �

Theorem 4.39 shows how to decode a received word w: calculate the syndromes of the cyclic shifts of
w until a syndrome si is found which is a burst error pattern with burst of length at most t; then n− i
cyclic shifts of ei = (0, si) will result in the most likely cyclic burst error pattern e.
The drawback to this method is the number of syndromes that need to be calculated. The next lemma
gives us a way to simplify this process, by showing how to calculate si+1 from si.

Lemma 4.40 If s is the syndrome of w with corresponding polynomial s(x), then s1(x) = xs(x)
(mod g(x)) is the polynomial corresponding to the syndrome of w1.

Proof: For 0 ≤ i ≤ n−1, let hi be the binary word in the ith row of H and let hi(x) be its polynomial
representation. Then hi+1(x) = xhi(x) (mod g(x)). Let w(x) =

∑n−1
i=0 aix

i be a received word. Then
the syndrome of w is s(x) =

∑n−1
i=0 aihi(x). Then w1(x) =

∑n−1
i=0 aix

i+1 and so

s1(x) =
n−1∑
i=0

aihi+1(x) = x
n−1∑
i=0

aihi(x) = xs(x) (mod g(x)).

�

81

Example 4.41 Let C be the 4 cyclic burst error correcting linear cyclic code of length 15 and dimen-
sion 7 with generator

g(x) = 1 + x4 + x6 + x7 + x8.

Find a parity check matrix for C and use it to decode the received word

w = 011 100 011 001 110.

We first need to calculate r8, r9, . . . , r14.

x8 = 1 + x4 + x6 + x7 ↔ 10001011

x9 = 1 + x+ x4 + x5 + x6 ↔ 11001110

x10 = x+ x2 + x5 + x6 + x7 ↔ 01100111

x11 = 1 + x2 + x3 + x4 ↔ 10111000

x12 = x+ x3 + x4 + x5 ↔ 01011100

x13 = x2 + x4 + x5 + x6 ↔ 00101110

x14 = x3 + x5 + x6 + x7 ↔ 00010111

Thus we find:

H =

1 0 0 0 1 0 1 1
1 1 0 0 1 1 1 0
0 1 1 0 0 1 1 1
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1

I8

To decode the received word w = 011100011001110, we first calculate the syndrome of w:

s = wH = 11011111, so s(x) = 1 + x+ x3 + x4 + x5 + x6 + x7.

Then we apply Lemma 4.40 to calculate si for i = 1, 2, . . . until we find a syndrome that contains a
burst error pattern with burst length at most 4.

s1(x) = xs(x) = x+ x2 + x4 + x5 + x6 + x7 + (1 + x4 + x6 + x7) = 1 + x+ x2 + x5 so s1 = 11100100
s2(x) = xs1(x) = x+ x2 + x3 + x6 so s2 = 01110010
s3(x) = xs2(x) = x2 + x3 + x4 + x7 so s3 = 00111001
s4(x) = xs3(x) = x3 + x4 + x5 + (1 + x4 + x6 + x7) = 1 + x3 + x5 + x6 + x7 so s4 = 10010111
s5(x) = xs4(x) = x+ x4 + x6 + x7 + (1 + x4 + x6 + x7) = 1 + x so s5 = 11000000

Since s5 is a burst error pattern with burst of length 2 (less than 4) we have e5 = 000000011000000
and hence e = 001100000000000. Thus the most likely transmitted codeword is

w + e = 010000011001110.

82

If we are applying this decoding process with a t cyclic burst error correcting code and we do not
obtain a syndrome with burst length at most t, then we conclude that a cyclic burst of more than t
errors has occurred and we request retransmission (if possible).

Exercise 4.42 Use the code C with generator g(x) from Example 4.41 to decode the received word
w = 110000100000101.

4.7 Another parity check matrix for a linear cyclic code

To find a parity check matrix for a linear cyclic code, we could apply Algorithm 2.13 to the RREF
generating matrix for the code and obtain the parity check matrix we have been using in the previous
section. However, it is sometimes useful to to have the following method for finding a parity check
matrix for a linear cyclic code.

Definition 4.43 If g(x) is a generating polynomial for a linear cyclic code C of length n and h(x) is
a polynomial such that g(x)h(x) = xn + 1, then we call h(x) a parity check polynomial for C.

Theorem 4.44 Let g(x) be a generating polynomial for a linear cyclic code C of length n and let h(x)
be a polynomial such that g(x)h(x) = xn + 1. Then:

1. f(x) ∈ C if and only if f(x)h(x) = 0

2. The matrix, the reversal of whose columns are

h(x), xh(x), . . . , xn−k−1h(x)

(where dimC = k), is a parity check matrix for C.

83

Example 4.45 Let C be the linear cyclic code of length 7 generated by g(x) = 1 +x+x2 +x4. Then
1 + x7 = g(x)h(x) where h(x) = 1 + x+ x3.

h(x) = 1 + x+ x3

xh(x) = x+ x2 + x4

x2h(x) = x2 + x3 + x5

x3h(x) = x3 + x4 + x6

We write the corresponding binary words as columns (from bottom to top) to obtain a parity check
matrix for C. Thus a generating matrix and parity check matrix for C are given by:

G =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

 and H =

0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0
1 1 0 0
1 0 0 0

.

4.8 Interleaving

One method for improving the burst error correcting capability of a code is to make use of interleaving.
This technique rearranges the order in which the digits of the codewords are transmitted.

Definition 4.46 Codewords are said to be interleaved to depth s if the digits of the codewords
c1, c2, . . . , cs, where

c1 = (c1,1, c1,2, . . . , c1,n)
c2 = (c2,1, c2,2, . . . , c2,n)

...
...

cs = (cs,1, cs,2, . . . , cs,n)

are transmitted in the order

c1,1 c2,1 . . . cs,1 c1,2 c2,2 . . . cs,2 c1,3 c2,3 . . . cs,n−1 c1,n c2,n . . . cs,n.

Exercise 4.47 Let C be the linear code with generating matrix G =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

. Write

down the string of digits to be transmitted if the following codewords were interleaved to depth 3.

c1 = 100110 c2 = 010101 c3 = 111000 c4 = 010101 c5 = 100110 c6 = 111000

84

Theorem 4.48 Let C be an l burst error correcting code. If C is interleaved to depth s then all
bursts of length at most sl will be corrected, providing that each codeword is affected by at most one
burst of errors.

Example 4.49 The code C in Exercise 4.47 is a 1-error correcting code. When interleaved to depth
3 it corrects all bursts of length 3 (provided those bursts are sufficiently separated).

The provision in Theorem 4.48 that each codeword is affected by at most one burst of errors requires
that bursts of errors are separated by sufficiently long periods of error free transmission. Choosing s
to be large increases the burst length that can be corrected, but also increases the required length of
error free transmission. Thus a good choice of s will depend on some knowledge of the likelihood of
periods of error free transmission on the channel.

In practice, the encoding of a message often uses two codes. For example, two Reed-Solomon codes are
used in the encoding of music onto compact discs, and two codes are used by NASA and the European
Space Agency in currect space communications where one code is a Reed-Solomon code and the other
is a convolutional code. Interleaving to depth s is an important technique in this two step encoding
process.

Let C1 be an (n1, k1, δ1) linear code and let C2 be an (n2, k2, δ2) linear code. Cross-interleaving of
C1 with C2 is done as follows. Messages (of length k1) are first encoded using C1 and the resulting
codewords (of length n1) are interleaved to depth k2. Taking the sequence of consecutive digits arising
from a particular position in a set of k2 codewords gives a word of length k2. These words are
then regarded as messages and encoded using C2. The codewords (of length n2) can themselves be
interleaved to any appropriate depth s before transmission.

Example 4.50 Let C1 and C2 be the codes with generating matrices

G1 =

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 and G2 =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

respectively. Then (n1, k1, δ1) = (8, 4, 4) and (n2, k2, δ2) = (6, 3, 3).

We shall encode the message words m1 = 1000, m2 = 1100 and m3 = 1010 by the cross-interleaving
of C1 with C2, and also interleave codewords of C2 to depth s = 3 = δ1− 1. Encoding m1, m2 and m3

with C1 gives

c1 = m1G1 = 10001110, c2 = m2G1 = 11000011 and c3 = m3G1 = 10100101.

If we interleave these to depth k2 = 3 and take the digits as message words of length 3, we obtain the
following messages:

111, 010, 001, 000, 100, 101, 110 and 011.

These are encoded using C2 to produce eight codewords which are then interleaved to depth s = 3:

c′1 = 111000 c′4 = 000000 c′7 = 110011
c′2 = 010101 c′5 = 100110 c′8 = 011110
c′3 = 001011 c′6 = 101101

85

(Note that c′7 and c′8 will be interleaved with the first codeword c′9 produced from the next three
messages m4, m5 and m6). So the string of digits to be transmitted begins

100110101010001011011000001011010001 . . .

The advantage of this two step encoding process is that C2 can be used to detect δ2 − 1 errors, rather
than to correct b(δ2−1)/2c errors. From a string of received digits, once we undo the final interleaving
from above, then we have received words of length n2 to be compared to codewords of C2. If errors
are detected in such a received word, then all digits in this codeword are flagged and treated as digits
that may be incorrect. Then we undo the cross-interleaving and consider the resulting words of length
n1 using the code C1. Notice that if we know that n1− δ1 + 1 digits in a received word of length n1 are
correct (unflagged), then we can find the remaining δ1−1 digits, and identify the most likely codeword
from C1 and hence the most likely message word.

Example 4.51 Suppose we receive the transmission from Example 4.50 above but the first 6 digits
are transmitted incorrectly, so we receive

011001101010001011011000001011010001101111011010110100 . . .

The decoding process to determine the most likely first three message words would proceed as follows.

We write the string of received digits in three (s) rows by writing column 1 first, then column 2 etc...
The rows then give us received words for the code C2.

ca = 001000 cd = 000000 cg = 110011
cb = 100101 ce = 100110 ch = 011110
cc = 111011 cf = 101101 ci = 111000

We now use the parity check matrix H to determine which of the words above are codewords of C2.

H =

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

caH = 011, cdH = 000, cgH = 000,
cbH = 011, ceH = 000, chH = 000,
ccH = 011, cfH = 000, ciH = 000.

Thus the first three are not codewords but the next six are codewords. We flag all 18 digits of the first
three words.
Since the generating matrix for C2 is in standard form, we obtain the following message words

ca → ∗ ∗ ∗ cd → 000 cg → 110
cb → ∗ ∗ ∗ ce → 100 ch → 011
cc → ∗ ∗ ∗ cf → 101 ci → 111

We write these message words in columns, so that the three (k2) rows give us the received words for
the code C1.

c1 = ∗ ∗ ∗01110 which corresponds to the codeword 10001110
c2 = ∗ ∗ ∗00011 which corresponds to the codeword 11000011
c3 = ∗ ∗ ∗00101 which corresponds to the codeword 10100101

86

Again, since the generating matrix for C1 is in standard form, we can determine that the most likely
first three message words were

m1 = 1000 m2 = 1100 m3 = 1010.

87

