4 Shannon’s Theory

4.1 Introduction

e (Claude Shannon wrote some of the pivotal papers on modern cryptology theory around 1949:

1. C E Shannon, “Communication Theory of Secrecy Systems”, Bell System Technical Journal,
Vol 28, Oct 1949, pp 656-715

2. C E Shannon, “Prediction and Entropy of printed English”, Bell System Technical Journal,
Vol 30, Jan 1951, pp 50-64

e in these he developed the concepts of:

— entropy of a message,
— redundancy in a language,
— theories about how much information is needed to break a cipher

— computationally secure vs unconditionally secure ciphers

e he showed that the Vernam cipher (discussed later) is the only currently known unconditionally
secure cipher, provided the key is truly random

Recall the three measures of security defined earlier:

1. unconditional security: cryptosystem cannot be broken, even with infinite computing power

2. provable security: breaking cryptosystem is equivalent to solving a difficult computational
problem

3. computational security: no known method of breaking cryptosystem can be done in a “rea-
sonable” amount of computing time

We have seen that neither a monoalphabetic substitution cipher nor the Vigenere cipher are even
computationally secure against a ciphertext-only attack, given sufficient plaintext.

In this section, we develop the theory of cryptosystems which are unconditionally secure against a
ciphertext-only attack.

4.2 Reminder of some probability

We make use of probability theory to study unconditional security. In each case, X and Y are random
variables.

Definition 4.1 We denote the probability that X takes on the value x by p(x), and that' Y takes on
the value y by p(y).

Definition 4.2 The joint probability p(z,y) is the probability that X takes on the value x and Y
takes on the value y.

Definition 4.3 The conditional probability p(x|y) denotes the probability that X takes on the value
x given that Y takes on the value y.
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Definition 4.4 The random variables X and Y are said to be independent if p(z,y) = p(z)p(y) for
all possible values of x of X and y of Y.

Remark 4.5 If p(y) # 0 then we the conditional probability p(x|y) is given by

_plz,y)
plely) = py)

We can rearrange the above equation to give p(z,y) = p(z|y)p(y) and by switching variables p(y, z) =
p(y|z)p(z). Then since p(z,y) = p(y, x), we have that

p(zly)p(y) = p(ylz)p(x).
Theorem 4.6 (Bayes’ Theorem) If p(y) # 0 then

_ pl@)p(ylz)

Corollary 4.7 X and Y are independent variables if and only if p(x|y) = p(x) and p(y|x) = p(y), for
allx € X andy €Y.

We will use Bayes’ Theorem to make inferences about the plaintext, given some ciphertext, by letting
p(z]y) be the probability that the plaintext character was x, given that the ciphertext character is y.

4.3 Distributions in cryptosystems

Definition 4.8 We denote the probability that plaintext x occurs by pp(x) and the probability that key
K is chosen by pr(K).

Remark 4.9 We assume that the key K and the plaintext x are independent events. This is reason-
able, as the key is chosen in advance without knowledge of what the plaintext will be.

The two probability distributions pp(z) for x € P and px(K) for K € K induce a probability distri-
bution on the ciphertextspace pe(y) for y € C, which we now estimate. For a key K € K define

C(K) ={ex(x) : v € P},
so C(K) is the set of possible ciphertexts which are the result of applying the key K to some plaintext.

The following calculations can be made by anyone who knows the probability distributions of the
plaintext and keytext spaces.

To calculate the probability of obtaining the ciphertext y, we take the sum over every key K that
can lead to ciphertext y, the product of the probability that K was used and the probability that
the plaintext dx(y) was used, that is the plaintext that encrypts to y using the key K. So for each
ciphertext y € C,

pe)= S pe(K)pp(di(y)).

{K:yeC(K)}

Thus we can compute the conditional probability that y € C is the ciphertext, given that x € P is the
plaintext:

pe(ylr) = Y pe(K).

{K:w=dg(y)}
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Hence, by using Bayes’ Theorem, we can also compute the conditional probability that z is the plain-
text, given that y is the ciphertext:

pp(7) Z pe(K)

x _ pr(@)pe(ylz) _ {K:w=dg(y)} |
pr(zly) e(¥) Z e (K)prldn (@)

{KwyeC(K)}

Example 4.10 Let P = {a,b} with pp(a) = 1/4 and pp(b) = 3/4. Let K = {K;, Ky, K3} with
pic(Kq) =1/2 and p(Ks) = p(Ks) = 1/4. Let C = {1,2,3,4}. Finally let the encryption matriz Er
be

Z
W N =
FENGVEE VR~

Then the probability distribution of pe is given by:

pe(l) = 1/8,

c(2) = 3/8+1/16 =7/16,

=

(1)
(2)
pe(3) = 3/16+1/16 =1/4,
pe(4) = 3/16.

Finally, we have the following conditional probability distributions:

pplall) = 1 pp(b]l) = 0
pp(al2) = 1/7 pp(b|2) = 6/7
pp(al3) = 1/4 pp(bl3) = 3/4
pp(ald) = 0 pp(b]4) = 1
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Exercise 4.11 Consider a general mixed alphabet and assume that all 26! keys are equally likely.
Show that pp(a|D) = pp(a).
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4.4 Perfect secrecy

Definition 4.12 A cryptosystem has perfect secrecy if pp(z|ly) = pp(x) for all x € P and y € C.
That is, the probability that the plaintext is x, given that the ciphertext y is observed, is identical to
the probability that the plaintext is x.

Theorem 4.13 Suppose the 26 keys in the Shift Cipher are used with equal probability 1/26. Then
for any plaintext probability distribution, the Shift Cipher has perfect secrecy.

Proof: Recall that P = C = K = Zys and for 0 < K < 25 the encryption rule is ex(z) = = + K
(mod 26). First we compute the distribution pe. Let y € Zog then

pe(y) = Y pe(K)pp(di(y))

= > (1/26)pp(y — K)
= 1/26) Y pely— K)
= (1/26) > pp(y)

= 1/26, for any y € Zgg.

Next we have that pe(y|z) = pc(y — x mod 26) = 1/26 for every x and y (take the unique key
K =y — z). Then using Bayes’ Theorem we have perfect secrecy since

pp(2)pe(y|z)
pe(y)

pp(z)(1/26)
(1/26)

= pp(z).

pr(zly) =

O

Remark 4.14 Therefore the Shift Cipher is “unbreakable” provided that a new random key is used
to encrypt every plaintext character.

Exercise 4.15 Define a modified shift cipher to be the same as the shift cipher except that the key
0 is not allowed. Show that the modified shift cipher does not achieve perfect secrecy.
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Let us investigate perfect secrecy in general. Without loss of generality, we can assume that pe(y) # 0
for all y € C (if not, then y is never used and can be omitted). Assume the cryptosystem has perfect
secrecy.

By Bayes’ theorem, the condition that pp(z|y) = pp(z) for all z € P and y € C is equivalent to
pe(ylz) = pe(y) for all x € P and y € C.

Fix any x € P. For each y € C, we have
peylr) = Y pe(E) =pe(y) #0.

{Kiz=dk (y)}

Hence for each y € C, there must be at least one key K such that ex(x) = y.
It follows that |KC| > |C|. In any cryptosystem we must always have |C| > |P|. Hence

Kl = [C] = [P.

In the boundary case, in which |K| = |C| = |P|, Shannon gives a nice characterization of when perfect
secrecy can be obtained.

Theorem 4.16 Shannon’s Theorem Suppose (P,C,K,E,D) is a cryptosystem, where |K| =
IC| = |P|. Then the cryptosystem provides perfect secrecy if and only if

1. every key is used with equal probability 1/|K|, and

2. for every x € P and every y € C, there is a unique key K such that ex(x) = y.

Proof: First we assume the given cryptosystem provides perfect secrecy. Therefore, for each x € P
and y € C there must be at least one key K such that ex(z) = y. So we have

€l = Hex(z) : K€K}

< K.

Using |C| = |K] (this is the boundary case) we find that |[{ex(z) : K € K}| = |K|. Hence, for each
x € P and y € C, there must be a unique key K such that ex(xz) = y. This proves condition (2).

Next, prove condition (1). Denote n = |K|. Let P ={z; : 1 <i < n} and fix ay € C. We can name
the keys Ki, Ky, ..., K, in such a way that eg,(z;) = y, for 1 < i < n. Using Bayes’ Theorem and
assumption of perfect secrecy, we have

pp(ws)pe(yles)

pp(Tily) =
el bely)
_ pe(xi)pe(f5)
pe(y)
Using pp(z;|y) = pp(x;) we obtain px(K;) = pe(y), for 1 < i < n. Therefore, we must have
pr(K:) = 1/[K].

Conversely, suppose the two hypothesized conditions (1) and (2) are satisfied. Proof that these imply
perfect secrecy mirror the proof of Theorem 4.13 (perfect secrecy of the Shift cipher).
O
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Exercise 4.17 Let n be a positive integer. A Latin square of order n is an n x n array L of integers
1,2,...,n such that every one of the n integers occurs exactly once in each row and each column of
L. We often denote the entry in row i and column j of the Latin square L by L(7,j). An example of
a Latin square of order 4 is:

112134
213141
314112
411123

Given any Latin square L of order n we can define a related cryptosystem. Take P = C = K =
{1,2,...,n}. For the key ¢ and plaintext j where 1 < i < n and 1 < j < n, the encryption rule e;
is defined to be ¢;(j) = L(3,j). Each key is used with equal probability. Show that this Latin square
cryptosystem achieves perfect secrecy.

4.5 One-time Pads

Shannon’s theorem (Theorem 4.16) offers a rigorous proof of the perfect secrecy of Vernam’s one-time
pad cipher (Gilbert Vernam, 1917).

Algorithm 4.18 Vernam’s one-time pad algorithm
Let n > 1 be an integer and take P =C = K = (Zy)".

Let the key K = (Ky, Ks, ..., K,) be a random sequence of bits generated by some “good” random
generator. Let the plaintext be x = (x1,xa,...,2,) and ciphertext y = (y1,Y2, ..., Yn). Define

ex(r) = (v1 + Ky, 20 + Ko, ..., 2, + K,,) mod 2;

and
dr(y) = (y1 + K1, 92 + Ka, ..., yn + K,,) mod 2.
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Using Theorem 4.16, we can see that the One-time Pad provides perfect secrecy.

Vernam hoped that his idea would have widespread commercial use. Unfortunately, there are major
disadvantages to unconditionally secure cryptosystems such as the one-time pad. The fact that

|| > |P| means that the amount of key that must be communicated securely is at least as big as the
amount of plaintext.

However, the One-time Pad has seen application in military and diplomatic context, where uncondi-
tional security may be of great importance.

4.6 Random number generation

Random numbers find numerous uses in cryptography, especially in authentication schemes, session
key generation, conventional and public-key cryptography.

Perfect random generation is impossible by a deterministic, finite-state device, like a computer. Usually
we have to generate pseudorandom numbers with a deterministic source. Resulting numbers must be
unpredictable, independent and uniformly distributed.

Two pseudorandom number generators are:

Linear congruence generator:
r — ax + b mod m
Blum-Blum-Shub generator:

z — 2z mod pq
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5

5.1

Modern Cryptography
From now on we will concentrate on modern encryption systems.

We will usually consider a message as a sequence of bits (eg as a series of ASCII characters
concatenated).

Good Cipher Design

— Avalanche effect: small input changes = large output changes

— Completeness effect: small parts of output depend on large parts of input
Bad Cipher Design

— based on what appears to be random, but isn’t (eg LFSRs)

Substitution-Permutation Ciphers

In a block cipher the message is broken into blocks, each of which is then encrypted. Most
modern ciphers we will study are of this form.

In 1949, Claude Shannon introduced the idea of substitution-permutation (S-P) networks, which
are the modern forms of substitution-transposition product ciphers.

1. Substitution Operation

— A binary word of length n is replaced by some other binary word of length n.

— The substitution function maps the 2" binary words of length n to the 2™ binary words
of length n and the whole substitution function forms the key.

— If we use n-bit words, the total number of possible keys is 2"!. This grows very rapidly
as n gets large.

— We can think of this as a large lookup table, with n address lines (hence 2" addresses),
each line n bits wide being the output value.

— We will call the substitution function an S-box.
S—-Box
0.. 2"

n=3 n=3

00l—— ——= 110

~ooooo0
~No o~ WNPEFEO
~No o WNPEFEO
= opooo s M

Figure 12: Substitution operation
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2. Permutation Operation

— A binary word of length n has its bits rearranged (permuted).
— The permutation forms the key.

— If we use n-bit words, the total number of possible keys is n!, which grows more slowly
than 2"!, and hence is less secure than the substitution step.

The rearrangement is equivalent to a wire-crossing in practice (though is much harder
to do in software).

— We will call the permutation function a P-box.

n=15 P-Box n=15

PRPOOOO0OO0OO0OO0OOO0OO0OO0OOr
[olele] 4 Jelelelelele] Jolole)]

Figure 13: Permutation operation

5.2 Practical Substitution-Permutation Networks
e In practice, we need to decrypt messages, as well as to encrypt them. Hence either:

— we must define inverses for each S and P-box, but this doubles the code/hardware needed,
or

— we must define a structure that is easy to reverse, so we can use basically the same code or
hardware for both encryption and decryption.

e Horst Feistel (IBM) devised such a structure in the early 1970’s, called a Feistel cipher.

5.2.1 Reminder of some binary mathematics

You are assumed to be familiar with the basic concepts of binary representation of numbers and simple
binary operations such as and (A), or (V), not (~) and exclusive-or (&).

Remark 5.1 Here are truth tables for these simple binary operations:

PAq|pVqg|~p|pbgq
1 1 0 0

o O | 3
Ol = Ol R

0 1 0 1
0 1 1 1
0 0 1 0

Remark 5.2 Usually, computers and other electronic means of data transmission store data as words,
which are bitstrings of a certain length. For example, many computers use words of length 32 bits.
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Remark 5.3 When we speak of applying an operation bit-wise to a word or pair of words, we really
mean that the operation is performed on each bit (or pair of corresponding bits), usually in parallel.

Exercise 5.4 If a and b are bitstrings defined as follows, find a A b and a & b.

a =00110101111010101
b = 11100111000111101
aNb =
adb =

5.2.2 Feistel Ciphers

In an S-P cipher the block size cannot be too small, as the resulting cipher might not be suffi-
ciently complicated. However permuting the bits of a large block is not practical.

Feistel’s idea was to approximate an ideal block cipher system, by doing permutations on smaller
components and then combining these smaller components to give a large overall block size.

The input to a Feistel cipher is a plaintext of length 2n and a key K.
The plaintext is divided into two parts: Lo (left) and Ry (right).

The two halves are passed through r rounds of processing and then combined to produce the
ciphertext block.

The input to the i*" round is (L;_1, R;_1) (the output from the (i — 1)*® round) and a subkey K;
(usually generated from the initial key K).

At the i*" round, the new data is obtained by:

L, = R,
R, = Li1® f(Ri-1, K;)

where @ means exclusive-or and f is a function which incorporates one stage of the S-P network,
controlled by the i*" subkey. The final ciphertext block is obtained by writing the two outputs
of the 7** round in the order R, L,.

In practice, we link a number of these stages together (typically 16 rounds) to form the full
cipher.

Decryption is the reverse of this process: work backwards through the hardware/software.
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3-stages of a Feistal cipher are illustrated below. The plaintext is LyRy. The Feistal cipher equations

become:
L1 - R() L2 - Rl
Ry = Lo® f(Ro, K1) Ry = L@ f(R

Ls
) KQ) R3

Ry

Figure 14: A 3-stage Feistel cipher

The final output of a 3-stage Feistal cipher would then be written as R3Ls.

Exercise 5.5 Consider a 3-stage Feistal cipher as depicted above.

by f((xla T2,T3, 1'4), ﬂ-) = (xw(l)a Tr(2) Tr(3), ‘TTr(4))-

Ry
Ly ® f(Ry, K3)

Let the function f be defined
Let the initial key K be the permutation (1234)

and let each subkey k; be the permutation obtained by applying the initial key permutation ¢ times.

Determine the ciphertext for the plaintext 00011011.




5.2.3 Design parameters

Block and key size: Larger block and key sizes give greater security but slower encryption
and decryption. 64 bits is currently the accepted block size, and 128 bits is currently the accepted
key size.

Number of rounds: Typical size is 16 rounds.

Subkey generation and round function: The greater the complexity of the algorithm, the
greater the difficulty of cryptanalysis.

Encryption and decryption speeds: Of major concern in practical applications!

Ease of analysis: Algorithm should be easy to analyse (not break!) in order to understand
strengths and weaknesses, and increase user confidence.

Some practical implementations include:

System Block size | Key size | num rounds
DES 64 56 16
Double-DES 64 112 32
Triple-DES 64 168 48
Blowfish 64 | 32...448 16
RC5 32,64,128 | 0...2040 variable
CASR-128 64 | 40...128 16
RC2 64 | 8...1024 16
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6

6.1

The Data Encryption Standard

Introduction

In May 1973 (again in Aug 1974) the National Bureau of Standards (now the National Institute of
Standards and Technology, NIST) called for possible encryption algorithms for use in unclassified
government applications.

NBS suggested the following guidelines:

High level of security

Complete specification and easy to understand

Security must be based on the key, not on the secrecy of the algorithm
System available to all users

Easily adaptable for diverse applications

Economical implementation in electronic devices

Algorithm efficient to use

e B A e

Algorithm must be easy to validate

©

Algorithm must be exportable

The guidelines were meant to enhance public confidence and encourage widespread use of the
cryptosystem.

The response was mostly disappointing, but IBM submitted their Lucifer design, and following
a period of redesign and comment it became the Data Encryption Standard (DES).

DES was adopted as a (US) federal standard in Nov 1976, published by NBS as a hardware only
scheme in Jan 1977 and by ANSI for both hardware and software standards in ANSI X3.92-1981
(also X3.106-1983 modes of use).

Subsequently it has been widely adopted and is now published in many standards around the
world (eg Australian Standard AS2805.5-1985).

One of the largest users of the DES was the banking industry, particularly with EFT, and
EFTPOS.

Although the standard is public, the design criteria used are classified and have yet to be released.

There has been considerable controversy over the design, particularly in the choice of a 56-bit
key:

1. W Diffie, M Hellman “Exhaustive Cryptanalysis of the NBS Data Encryption Standard”,
IEEE Computer 10(6), June 1977, pp74-84

2. M Hellman “DES will be totally insecure within ten years”, IEEE Spectrum 16(7), Jul 1979,
pp 31-41

Recent analysis has shown that despite this, the choice was appropriate, and that DES is well
designed.

67



e The DES was regularly reviewed and renewed. The last renewal (of regular DES) was in Jan
1994, as soon thereafter rapid advances in computing speed rendered the 56 bit key susceptible
to exhaustive key search, as predicted by Diffie and Hellman. In 1999 the DES was renewed as
a standard that specified the use of Triple DES, and this standard was withdrawn in 2005.

e There have been demonstrated breaks:

— 1997 on a large network of computers in a few months
— 1998 on dedicated hardware in a few days
— 1999 above combined in 22 hrs!

e The DES has also been theoretically broken using a method called Differential or Linear Crypt-
analysis, however in practise this is unlikely to be a problem.

e When it was no longer considered “secure” for transactions, it was replaced by the AES.

6.2 Overview of DES
The DES algorithm occurs in three steps:

1. Given a plaintext x = (x1, %2, ..., Zs4), a bitstring zo is constructed by permuting the bits of x
according to a fixed initial permutation /P (see Figure 15). So

[P(.Z'l,xg, e ,.’13‘64) = ($58,$50,I’42, e ,.1'7).

We write zg = [ P(x) = LoRy, where Lo comprises the first 32 bits of zy and Ry the last 32 bits.

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
o7 49 41 33 25 17 9
599 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N Ot W — 00 O = 1N

Figure 15: Initial Permutation I P

2. 16 iterations of a certain Feistel algorithm are then computed. We compute L;R;, 1 < i < 16,
according to the following rule:

Li = R
R, = Li1® f(R_1,K,),

where @ denotes the exclusive-or of two bitstrings and K, Ko, ..., K5 are each bitstrings of
length 48 computed as a function of the key K. This is shown in Figure 16. The function f is
discussed below.
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H

Figure 16: One round of DES encryption

3. Apply the inverse permutation /P! to the bitstring R;¢L16, obtaining the ciphertext y. Thus
y=IP ' (RysLys) (see Figure 17).

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 39 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Figure 17: The Inverse Permutation I P!

The initial permutation and the final permutation have little impact on the security of DES. The
purpose of these permutations was to ease the input/output transfer of data blocks between preexisting
hardware and newly created DES implementations.

6.3 The function f
Recall that in Step 2 of DES described above, we had

Ri=L;i1® f(Ri_1, K;).

The function f takes as input a first argument A, which is a bitstring of length 32, and a second
argument J which is a bitstring of length 48, and produces as output a bitstring of length 32. Thus

o {0,132 x {0,1}* — {0,1}**
1. The first argument A is “expanded” to a bitstring of length 48 according to a fixed expansion

function E = {0,1}3? — {0,1}%8. E(A) is a permutation of A with 16 bits occurring twice; see
Figure 18.
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32 1 2 3 4 5
4 5 6 7 8 9
g 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Figure 18: E bit-selection table

2. Compute E(A) @ J and write the result as the concatenation of eight 6-bit strings
B = BlBngB4B5B6B7Bg.
3. This step uses eight S-bozes S ... Ss (see Figure 20 for the S-boxes). Each S; is a fixed 4 x 16
array whose entries come from the integers 0,1, ...15. Think of 5; as a function
S; o {0,1}* x {0,1}* — {0,1}".

Given a bitstring of length six, say B; = b1babsbsbsbs, we compute S;(B;) as follows:

The two bits b1bs determine the binary representation of a row 7 of S; and the four bits bybsbsbs
determine the binary representation of a column ¢ of S;. Then S;(B;) = S;(r,¢), written in
binary as a bitstring of length four. In this fashion, we compute C; = 5;(B;) for 1 < j < 8.

4. The string C' = C1C,C3C,C5CsC7Cy of length 32 is permuted according to a fixed permutation
P (see Figure 19). The resulting bitstring P(C') is defined to be f(A,J).

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 21 3 9
19 13 30 6
22 11 4 25

Figure 19: P

6.4 Computation of key schedule

e Finally, we need to describe the computation of the subkeys (called the key schedule) from the
initial key K.
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e K is a bitstring of length 64.

e 56 bits of K are used in the subkeys and 8 bits are parity-check bits (for error-detection).

— The bits in positions 8, 16, ...,64 are defined so each 8-bit byte has an odd number of 1’s.

— Hence, a single error can be detected within each byte.

— The parity-check bits are ignored in the computation of the subkeys.

e The complete key schedule is obtained via the following procedure. The full schedule is given at

the end of this section.

Steps in computation of key schedule:

1. Given a 64-bit key K, ignore the parity-check bits and permute the bits of K according to the
following (fixed) permutation PC;. We will write PC,(K) = CyDy, where C; comprises the first

28 bits of PC,(K) and Dy the last 28 bits.

o7
1
10
19
63
7
14
21

49
o8
2
11
95
62
6
13

41
50
99
3
47
54
61
5

33
42
o1
60
39
46
93
28

25
34
43
52
31
38
45
20

17
26
35
44
23
30
37
12

9
18
27
36
15
22
29

2. For ¢ ranging from 1 to 16, compute

and K; = PCy(C;D;). LS; represent a cyclic shift (to the left) of either one or two positions,
2,9 or 16, and shift two positions

C;
D;

PCy

LSZ(CZ_l)
LSi(Di—l)a

depending on the value of ¢: shift one position if ¢ =
otherwise. PCy is the following (fixed) permutation.

L,

14

23
16
41
30
44
46

17
28
19

52
40
49
42

11
15
12
27
31
ol
39
20

24

20
37
45
o6
36

1
21
26
13
47
33
34
29

5
10

%)
48
93
32

PCy

71




6.5 Summary of DES
1. Compute subkeys from initial 64-bit key K.

(i) Apply PCy to 64-bit string K to get 56-bit string CyDy (each 28 bits).
(ii) Left shift Cy and Dy to get Cy, Dy, Cy, Do, ..., Cis, D1g and apply PCs to each C;D; to get
K; (a 48-bit string) for i =1,2...,16.
2. Apply IP to (plaintext) bitstring x of length 64 to get LoRy.

3. Apply 16 rounds of Feistel algorithm to get Ri6L16. In each round, apply the following steps to
compute f(R;_1, K;):
(a) Expand 32-bit string R;_; to 48-bit string.
(b) Add 48-bit string from step (a) to 48-bit subkey K;.

(c) Split resulting 48-bit string into 8 groups of 6 and use S-boxes to replace each 6-bit string
with a 4-bit string, thereby obtaining a 32-bit string.

(d) Apply permuation P to this 32-bit string to get the output f(R;_1, K;).

4. Apply TP~ to bitstring RigL1¢ to get (ciphertext) bitstring y of length 64.

6.6 Hexadecimal notation

Remark 6.1 In computer science (and related mathematics) it is often convenient to work in hez-
adecimal notation (or hex): this is a system in which numbers are represented base 16.

Remark 6.2 In usual base 10 operations there are 10 digits (0 - 9); in base 2 operations there are
2 digits (0, 1). In base 16 there are 16 digits (0 - 9, a, b, ¢, 4, e, f). The digit a in base 16
equals 10 in base 10, b equals 11, c equals 12, d equals 13, e equals 14 and f equals 15.

Remark 6.3 Be a bit careful; when working base 16, the number 123 means 1 x 162 +2 x 16 + 3 =
256 4+ 32 + 3 = 291 base 10.

Remark 6.4 Base 16 is often convenient because there are exactly 16 distinct bitstrings of length 4,
so there is a convenient correspondence between bitstrings of length 4 and hexadecimal digits. Clearly,
0000 equals 0 (base 10) which equals 0 (hex), 1000 equals 8 (base 10) which equals 8 (in hex), and
1110 equals 8 +4 4 2 = 14 (base 10) which equals e (hex).

Remark 6.5 We will often write lengthy strings of bits using hex notation; to convert from hex to
bits, convert each hex character to its 4-bit equivalent. For example, 2f= 00101111.

6.7 Using DES

Definition 6.6 A cyclic shift to the left (or left rotate) by one position involves moving each bit in a
bitstring one place to the left, with the original leftmost bit becoming the new rightmost bit.

Exercise 6.7 Given the bitstring 11100110, cyclic shift it left by one place, then cyclic shift the answer
left by 4 places.
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Example 6.8 Apply the above key computation algorithm to obtain K; from the initial (hexadecimal)
key 133457799BBCDFF1.

hex 1 3 3 4 ) 7 7 9
binary 0001 0011 0011 0100 0101 0111 0111 1001
hex 9 B B C D F F 1

binary 1001 1011 1011 1100 1101 1111 1111 0001
So K = 0001 0011 0011 0100 0101 0111 0111 1001 1001 1011 1011 1100 1101 1111 1111 0001

PCI(K) = C()DQ where
Cp = 1111 0000 1100 1100 1010 1010 1111 and Dy = 0101 0101 0110 0110 0111 1000 1111.

Left shift by one to get C; and Dy, so
Cy =111 0000 1100 1100 1010 1010 1111 1 and Dy = 101 0101 0110 0110 0111 1000 1111 0.

PCy(CyDy) = K; = 0001 1011 0000 0010 1110 1111 1111 1100 0111 0000 0111 0010.

Example 6.9 Perform the first round of DES encrpytion on the (hexadecimal) plaintext
0123456789ABCDEF  using the (hexadecimal) key — 133457799BBCDFF1.

First convert the plaintext to binary, and note that we have calculated K, in Example 6.8.

hex 0 1 2 3 4 5 6 7
binary 0000 0001 0010 0011 0100 0101 0110 0111
hex 8 9 A B C D E F

binary 1000 1001 1010 1011 1100 1101 1110 1111

Permute the 64-bit string to get [ P(x) = LyRy where
Ly =11001100000000001100110011111111 and Ry = 11110000 101010101111 0000 1010 1010.

To calculate f(Ry, K1):

(a) Expand Ry to get
E(Rp) = 0111 1010 0001 0101 0101 0101 0111 1010 0001 0101 0101 0101.

(b) Use the key K; to calculate
E(Ry) & K; = 011000 010001 011110 111010 100001 100110 010100 100111.

(c) Use the S-boxes to replace each 6-bit string with a 4-bit string. For the first six bits bybybsbsbsbg =
011000 we look up row b1bg = 00 and column bybsbsbs = 1100 in the S-box S;. This is 5 which
gives 0101 in binary. Repeat the procedure for the other 6-bit strings and the resulting 32-bit
string is

C' =01011100100000101011 01011001 0111.

(d) This is permuted to get
f(Ro, K1) = P(C) = 00100011 0100 1010 1010 1001 1011 1011.

Thus Ly = Ry and Ry = Lo @ f(Rp, K;) = 111011110100 101001100101 0100 0100.
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6.8 Decryption

Decryption is done using the same algorithm as encryption, starting with y as the input, but using
the key schedule K¢, K15, ..., K; in reverse order. The output will be the plaintext x.

6.9 The DES Controversy
When DES was proposed as a standard, there was considerable criticism.

One objection to DES concerned the S-boxes. All computations in DES, with the exception of the
S-boxes, are linear. The S-boxes, being the non-linear component of the cryptosystem, are vital to its
security.

Do the S-boxes contain hidden trapdoors, allowing the National Security Agency (NSA) to easily
decrypt data?

In 1976, the NSA asserted that the following properties of the S-boxes are design criteria:

1. Each row of each S-box is a permutation of the integers 0,1,2,...,15.

2. No S-box is a linear or affine function of its inputs.

3. Changing one input bit to an S-box causes at least two output bits to change.

4. For any S-box and any input x, S(z) and S(x & 001100) differ in at least two bits.
5. For any S-box, for any input z, and for any e, f € {0,1}, S(x) # S(z @& 11ef00).

6. For any S-box, if one input bit is fixed, and we look at the value of one fixed output bit, the
number of inputs for which this output bit equals 0 will be “close to” the number of inputs for
which the output bit equal 1.

It is not publicly known if further design criteria were used in the construction of the S-boxes.

The most pertinent criticism of DES is that the size of the keyspace, 2%, is too small to be really
secure. Various special-purpose machines have been proposed for a known plaintext attack, which
would essentially perform an exhaustive search for the key.

1977 Diffie and Hellman $20,000,000 computer finds the key in a day.
1993 Michael Wiener $1,000,000 computer finds the key in 3.5 hours.
2006 | University of Bochum and Kiel $10,000 computer breaks DES in around 7 days

6.10 Applications of DES

e Even though the description of DES is quite lengthy, it can be implemented very efficiently,
either in hardware or in software.
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e One very important application of DES was in banking transactions, using standards developed
by the American Bankers Association. DES was used to encrypt personal identification numbers
(PINs) and account transactions carried out by automated teller machines (ATMs). Until quite
recently, DES was also used by the Clearing House Interbank Payments System (CHIP) to
authenticate transactions involving over $1.5 x10'? per week.

e DES was also widely used in government organisations, such as the Department of Energy, the
Justice Department, and the Federal Reserve System.

e The federal standard FIPS 46-3 was withdrawn by the National Institute of Standards and
Technology in 2005.

6.11 Variants of DES
e A number of DES variants are still used (eg on the internet).
e Double DES:

— requires two keys K7 and K5, applied to a plaintext
-z = ek, (T) = ek, ek, ()

Triple DES:

— requires three keys K, Ky and K3, applied to a plaintext

— T — ek, (Qj) — €K2(€K1 (33')) — 6K3<€K2(6K1(x)))

— no known practical methods of attack: brute force is impossible

Triple DES with two keys:

— requires two keys K, and K5, applied to a plaintext
- T CK, (17) - EK2 <€K1 (Z‘)) — €K, (EK2 (eKl (JI)))

It can be shown that double DES is not reducible to (single) DES.

That is, given keys K7 and K5, there does not exist a single key K such that ex (z) = ek, (ex, (x)).

6.12 Weak keys

In many block ciphers, not all keys are equally good.

Some keys result in reduced cipher complexity, by exhibiting certain regularities in encryption
or a poor level of encryption.

Such keys result in the same subkey being generated in more than one round.

Weak keys

— same subkey is generated for every round

— DES has 4 weak keys (eg string of all 0’s, string of all 1’s)

Semi-Weak keys
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— only two distinct subkeys are generated on alternate rounds
— DES has 12 of these (in 6 pairs)

e Demi-Semi-Weak keys
— only four distinct subkeys generated
e Must avoid usage of any weak keys!

e It is not a significant problem for DES, as they form such a small fraction of all available keys.

6.13 Key schedule and S-boxes

S;p014 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0O 1 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 O
5 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
Syl15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 1, 2 8 14 12 0 1 10 6 9 11 5
0O 14 7 11 10 4 13 1 5 &8 12 6 9 3 2 15
3 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S3110 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
B3 7 0 9 3 4 6 10 2 & 5 14 12 11 15 1
3 6 4 9 8 1, 3 0 11 1 2 12 5 10 14 7
1 100 13 0 6 9 8 7 4 15 14 3 11 5 2 12
Syl 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
3 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
o 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 1 0 6 10 1 13 8 9 4 5 11 12 7 2 14
Ss12 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
4 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 1 9 12 5 6 3 0 14
1 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S¢ 112 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
00 1 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8§ 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0O 8 13
S;|14 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
3 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 &8 O 5 9 2
6 11 13 8 1 4 10 7 9 5 0 16 14 2 3 12
Sg|13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
T 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 &5 6 11

Figure 20: The eight S-boxes for DES
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The key schedule for the 16 rounds
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7 International Data Encryption Algorithm

7.1 Reminder of some mathematics

Definition 7.1 A binary operation o on a non-empty set S is a mapping which associates with each
ordered pair (a,b) of elements of S a uniquely defined element a o b of S. Thus Va,b € S, 3 a unique
¢ € § such that c =aob.

Remark 7.2 We say that the set S is closed under the operation o.
Example 7.3 Addition and multiplication are both examples of binary operations on Z.

Example 7.4 We can represent a binary operation o on a set A = {a,b,c,d, e} using a table as
follows.

ola b ¢ d e
ala b ¢ d e
blb ¢ d e a
cle d e a b
dld e a b c
ele a b ¢ d

For example, aoc=c¢, dob=e.
Exercise 7.5 Which of the following represent binary operations?

1. addition on Zog?

2. addition on S ={0,1,2,3,4}7

3. addition on the set of even integers?
4. addition on the set of odd integers?

5. Example 7.4 above?

Remark 7.6 A binary operation o on a set .S is said to be commutative if aob = boa for all a,b € S.
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Exercise 7.7 Which of the following binary operations are commutative?
1. addition on R?
2. division on R?

3. Example 7.4 above?

Remark 7.8 A binary operation o on a set S is said to be associative if (a 0b) oc = ao (boc) for all
a,b,ceS.

Exercise 7.9 Which of the following binary operations are associative?
1. addition on R?
2. Example 7.4 above?

3. o is the binary operation on R defined by a o b = a + 2b for all a,b € R.

Definition 7.10 A set S is said to have an identity element with respect to the binary operation o on
S if there exists an element v € S such that uox =z ou =z for all x € §. We call such an element
u the identity element.

Exercise 7.11 What is the identity element for following binary operations.
1. addition on R?
2. multiplication on R?

3. Example 7.4 above?
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Theorem 7.12 If an identity u exists on a set S with binary operation o, then u is unique.

Definition 7.13 Let u be the identity element for the binary operation o defined on the set S. An
element y € S is called an inverseof x € Sif xoy =yox = u.

Exercise 7.14 If S is the set on which each of the following binary operations is defined, find the
inverse for each z € S.

1. addition on R?
2. multiplication on R?

3. Example 7.4 above?

Remark 7.15 We sometimes write ¢! to mean the inverse of a. Be careful with this notation: if the
operation is addition, then a~! must be interpreted as the additive inverse, —a.

Definition 7.16 A non-empty set G on which a binary operation o is defined is said to form a group
with respect to o provided that for any a,b € G, we have:

1. Associative law: (aob)oc=ao (boc)

2. Identity: there exists u € G such that aou=wuoa =a

3. Inverses: For each a € G there exists a! € G such that aoca™' =aloa=u
(By definition, the set is closed under the binary operation o.)
Exercise 7.17 Which of the following form a group?

1. addition on R?

2. multiplication on R?

3. Example 7.4 above?
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7.2

Introduction to IDEA
IDEA: International Data Encryption Algorithm

It is considered to be one of the most secure block ciphers available.
IDEA was designed by Lai and Massey in 1991.

The plaintext blocks are 64 bits long and the keys are 128 bits long.
IDEA is not a Feistel algorithm.

The same algorithm is used for decryption and encryption (with decryption subkeys calculated
from encryption subkeys).

It is easy to implement in both software and hardware.
Encryption/decryption speed is similar to DES.

IDEA is an integral part of the well-known internet security suite PGP (Pretty Good Privacy).

Mathematics of IDEA

IDEA contains eight rounds of encryption (each with 14 steps), and one output round.

Each round of encryption is based on three group operations which are carried out on n-bit
blocks:

1. & : bitwise exclusive or;
2. B : addition modulo 2", where the blocks are considered as their integer values;
3. ® : multiplication modulo 2" 4 1, where all blocks are considered as their integer values

except that the block containing all zeroes is considered as the integer 2" (we require that
2" + 1 be prime).

Plaintext blocks (of size 64 bits) are divided into four blocks, each of length n = 16 bits, and the
above operations are carried out on the 16-bit blocks.

Exercise 7.18 For this example, let n = 4. Evaluate each of

1.
2.
3.
4.

0110 & 1011
0110 B 1011
0110 ® 1011

0000 ® 1011

We describe the IDEA algorithm in two steps: first key generation, then the encryption algorithm.
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Algorithm 7.19 Key generation for IDEA
Let the IDEA key of length 128 bits be K. Each encryption round uses 6 subkeys, and the output
round uses 4 subkeys. The subkeys, denoted KZ(T), 1 <r<81<i<6and Ki(g), 1 <4< 4 are
obtained from K by continually dividing K into 8 16-bit subkeys, rotating K 25 bits to the left and
then repeating. The resulting subkeys are shown in Figure 21.
K K Ky Ky K5 K

0—15 16 — 31 32 —-47 | 48—63 | 64—79 | 80—95
96 — 111 | 112 —-127 | 25—40 | 41 —56 | 57—72 | 73 —88
89 — 104 | 105 —120 | 121 -8 9—-24 | 50—-65 | 66 —81
82 —97 | 98 —113 114 -1 2—-17 | 18 =33 | 34—-49
75 —90 | 91 —-106 | 107 —122 | 123 —-10| 11 —26 | 27 —42
43 —-58 | 59 —-74 |100—-115| 116 -3 | 4—19 20 — 35
36 —51 | 52 —67 68 —83 | 84 —-99 | 125—12| 13 —28
29 —44 | 45-60 61—76 | 77—92 | 93 —108 | 109 — 124
22 —-37 | 38—-53 54 —-69 | 70 -85 — —

© 00 I O U W N =

Figure 21: Bit content of subkeys for each round of IDEA. Key bits are indexed from 0 in the original
128-bit key K

Algorithm 7.20 IDEA encryption algorithm

Let the plaintext P (of length 64 bits) be written in four blocks Py P, P3Py, each of length 16 bits.
Denote the ciphertext at the start of each round r, 1 < r < 9, by C") = CY)C'ér)C’éT)Cy), with
CW = P. Each round r, 1 <7 < 8, of IDEA comprises the following steps (see Figure 22):

1L V=C" oK =" K") mod (216 + 1)
2. Yy = O BKY) = (CF + K§) mod (2')
3. Vs =C K = (O + K{) mod (2')
4. Y, =C" oK =" K" mod (216 + 1)
5. Y5 =Y1 0 Y3
6. Yo =Y20Y,
7. Y =Ys 0 K = (Vs K) mod (2! + 1)
8. Vs = Y5 B Yy = (Y; + Y7) mod (2'°)
9. Yo=Y 0 K = (Ys- K{”) mod (2! + 1)
10. Yio = Y; BYy = (Y7 + Yy) mod (2'°)
1. "V =y, @Y,
12. Y = v, e Y,
13. O§Y = v, @ Yy

14. O =Y, @ Yy
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The values Y;, 1 <7 < 10 are called the intermediate values. The outputs C’i(r), 1 <7 <4, are called
the intermediate ciphertexts. To obtain the final ciphertext, follow the eight encryption rounds by the
following output round:

1. ¢, =0 oK

(€ K mod (216 + 1)
2. G, =CY BKY = (€Y + K{) mod (219)
3. 05 =CBKEY = () + K{) mod (219)
4. =P ok = K”) mod (26 + 1)

Finally, the 64-bit ciphertext block is given by the four 16-bit blocks C;C5C3CYy.

Summary of IDEA

1. Write the 64-bit plaintext in four blocks of 16 bits as

P =PpPP, =CMePeV e = oW,

2. Carry out the 14 steps to obtain C’f)C’ C’ 0(2) C®). Repeat this until you get
ool = oo,

3. Carry out the 4 steps of the output round to get the 64-bit ciphertext C' = C;CyC5C.

Example 7.21 Apply the first round of IDEA for the following key and plaintext (in hex).
Key: 01010303030301010123cdef00110011  Plaintext: 000f11111111000f

KEY:
hex 0 1 0 1 0 3 0 3

binary 0000 0001 0000 0001 0000 0011 0000 0011

hex 0 3 0 3 0 1 0 1
binary 0000 0011 0000 0011 0000 0001 0000 0001

hex 0 1 2 3 C d e f
binary 0000 0001 0010 0011 1100 1101 1110 1111

hex 0 0 1 1 0 0 1 1
binary 0000 0000 0001 0001 0000 0000 0001 0001

Keys for round 1
K = 0000000100000001 = 257

K( ) = 00000011 00000011 = 771
K = 0000001100000011 = 771
K“) = 00000001 00000001 = 257
K“; = 0000000100100011 = 291

K( =1100110111101111 = 52719
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PLAINTEXT:

hex 0 0 0 f 1 1 1 1
binary 0000 0000 0000 1111 0001 0001 0001 0001
hex 1 1 1 1 0 0 0 f

binary 0001 0001 0001 0001 0000 0000 0000 1111

ENCRYPTION ROUND 1:

P1 ¢ = 0000000000001111 = 15
O(l) = 00010001 00010001 = 4369

P3 = Y = 000100010001 0001 = 4369

P, = C‘ ) = 0000000000001111 = 15

v, =CW o KW = (15 257) mod 65537 = 3855 so Y3 = 000011110000 1111

Yy = OV B K = (4369 + 771) mod 65536 = 5140 so Y = 0001 0100 0001 0100
Vs = OV 8 KV = (4369 + 771) mod 65536 = 5140 so Y3 = 0001 0100 0001 0100
Vi=C o KY = (15-257) mod 65537 = 3855 so Y; = 0000 111100001111

Y5 =Y @ Ys = 000110110001 1011 = 6939

Y5 =Y, @Y, = 000110110001 1011 = 6939

Vs =Y; 0 K = (6939 - 201) mod 65537 = 53139 so Y; = 110011111001 0011
Yz = Ys B Y7 = (6939 + 53139) mod 65536 = 60078 so Yz = 111010101010 1110

Yy = Ys @ K = (60078 - 52719) mod 65537 = 45483 so Yy = 10110001 1010 1011
Yip = Y; B Y, = (53139 + 45483) mod 65536 = 33086 so Y3, = 10000001 0011 1101

The output of round 1 is:

c® =V, & Yy = 1011 111010100100

c? =Y, @Y, = 10100101 1011 1111

¥ = Y, & Yy = 10010101 0010 1001
¥ = v, @Yy = 100011100011 0010

85



The following figure gives a schematic diagram of IDEA. Note that for clarity, in the diagram the
operation ® is shown as a multiplication sign inside a circle.

Plantext 4 x 16 hit
Cil) Cél) Cél) C4(|_1)
I J
KO K O m -k
@
i &)
| .
Kél) X [+ First
V J ) Round
®=Kg
® | @
6j><¢ 7
7 additional rounds
Output
(9) (9) ( 9) 9) Transform
Ky 9@? é Kz E @?e K4 (9th round)
C, G C; C,

Ciphertext 4 x 16 bit

Figure 22: IDEA encryption
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7.4

The decryption process is identical to encryption except that different subkeys are used. Let DK;"

Decryption under IDEA
(r)

denote the ™ decryption subkey for round r of the decryption process, 1 < r < 9and 1 <i <6
(1 # 5,6 for round 9). Then

o forr=1,2,...9, (DK, DKy = (KM"™)-1, (K071,

o forr = 2’ e 87 (DKéT)’ DK?(;T)) = (_(Kéloir))a _<K2(107T)))7

for r = 1,9, (DK, DK{”) = (—(K§"*™), —(K{"™)),

forr=1,2,...8, (DK, DKy = (K™, K&™),

where Z~! means the multiplicative inverse modulo 2'¢ 4+ 1 of Z and —Z means the additive inverse
modulo 2'¢ of Z and in carrying out these two operations, the block is considered as its integer value.

7.5

7.6

Cryptanalysis of IDEA

Brute force is not possible as the search space has size 228,

One of the design principles of IDEA was to facilitate analysis of its strength against differential
cryptanalysis: IDEA is considered to be immune to such attacks.

In addition, no linear cryptanalytic attacks on IDEA have been reported and there is no known
algebraic weakness in IDEA.

The most significant cryptanalytic result is due to Daemen (1994), who discovered a large class
of 251 weak keys for which the use of such a key during encryption could be detected and the key
recovered. However, since there are 2!2® possible keys, this result has no impact on the practical
security of the cipher for encryption.

IDEA is generally considered secure and both the cipher development and its theoretical basis
have been openly and widely discussed.

IDEA and AES

Despite being a very secure cryptosystem, IDEA could not be considered for the Advanced Encryption
System (AES) discussed in the next section, since the AES specification called for 128-bit data blocks.
IDEA has data blocks of length 64 bits and the algorithm does not generalise to allow 128 bit data
blocks. To see why, recall that IDEA involves evaluating multiplication modulo 2™ + 1, where m is
one quarter of the block length. For this to work, we need 2 41 to be prime. This is true for m = 16,
but not for m = 32.
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8 AES: The Selection Process

DES was recently replaced as the industry standard cryptosystem. In this section we discuss some
information about the selection process for the replacement for DES: The Advanced Encryption
Standard.

We'll discuss technical detail in a separate section.

8.1 Press release

Commerce Department Announces Winner
of Global Information Security Competition

FOR IMMEDIATE RELEASE: Contact: Philip Bulman Oct. 2, 2000 (301) 975-5661

G 2000-176

A worldwide competition to develop a new encryption technique that can be used to protect com-
puterised information ended today when Secretary of Commerce Norman Y. Mineta announced the
nation’s proposed new Advanced Encryption Standard. Mineta named the Rijndael (pronounced
Rhine-doll) data encryption formula as the winner of a three-year competition involving some of the
world’s leading cryptographers.

“Once final, this standard will serve as a critical computer security tool supporting the rapid growth of
electronic commerce,” Mineta said. “This is a very significant step toward creating a more secure digital
economy. It will allow e-commerce and e-government to flourish safely, creating new opportunities for
all Americans,” he said.

Computer scientists at the National Institute of Standards and Technology, an agency of the Commerce
Department’s Technology Administration, organised the international competition in a drive to develop
a strong information encryption formula to protect sensitive information in federal computer systems.
Many businesses are expected to use the AES as well....

Researchers from 12 different countries worked on developing advanced encoding methods during the
global competition. NIST invited the worldwide cryptographic community to “attack” the encryption
formulas in an effort to break the codes. After narrowing the field down from 15 formulas to five,
NIST invited cryptographers to intensify their attacks on the finalists. The agency and the world
cryptographic community also evaluated the encoding formulas for factors such as security, speed and
versatility.

The Rijndael developers are Belgian cryptographers Joan Daemen (pronounced Yo’-ahn Dah’-mun)
of Proton World International and Vincent Rijmen (pronounced Rye’-mun) of Katholieke Universiteit
Leuven. Both are highly regarded experts within the international cryptographic community.

NIST organised and managed the competition with considerable private-sector cooperation. The
competing AES candidates were sophisticated mathematical formulas called algorithms. Algorithms
are at the heart of computerised encryption systems, which encode everything from electronic mail to
the secret personal identification numbers, or PINs, that people use with bank teller machines.

When approved, the AES will be a public algorithm designed to protect sensitive government infor-
mation well into the 21st century. It will replace the aging Data Encryption Standard, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
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sensitive, unclassified information. DES and a variant called Triple DES are used widely in the private
sector as well, especially in the financial services industry.

The effort to establish the AES reflects the dramatic transformation that cryptography has undergone
in recent years. Just a few decades ago the science of cryptography was an esoteric endeavour employed
primarily by governments to protect state and military secrets. Today, millions of Americans use
cryptography, often without knowing it. Most people who use automated teller machines have used
cryptography because the secret PINs required by the machines are encrypted before being sent to
a computer that makes sure the number matches the card. Others use information encryption when
they make a purchase over the Internet. Their credit card numbers are encrypted when they place an
order. Hundreds of encryption products currently employ DES or Triple DES, and such systems have
become almost ubiquitous in the financial services industry. Consequently, the selection of the AES
may affect millions of consumers and businesses.

NIST requested proposals for the AES on Sept. 12, 1997, and a variety of organisations around the
world responded with enthusiasm. Each of the candidate algorithms was required to support key sizes
of 128, 192 and 256 bits. For a 128-bit key size, there are approximately 340 x 10%¢ (340 followed by
36 zeros) possible keys.

NIST evaluated the candidate algorithms and received invaluable assistance from cryptographers at
computer security companies and universities around the world. Good security was the primary quality
required of the winning formula, but factors such as speed and versatility across a variety of computer
platforms also were considered. In other words, the algorithms must be able to run securely and
efficiently on large computers, desktop computers and even small devices such as smart cards.

NIST and leading cryptographers from around the world found that all five finalist algorithms had a
very high degree of security. Rijndael was selected because it had the best combination of security,
performance, efficiency, implementability and flexibility.

The AES competition was organised by computer scientists in NIST’s Information Technology Labo-
ratory. A lengthy technical analysis of the AES candidates is being posted on NIST’s web site today
at www.nist.gov/aes.

8.2 Remarks for the press

REMARKS BY RAY KAMMER
Director, National Institute of Standards and Technology
Advanced Encryption Standard announcement
Monday, October 2, 2000

NIST started thinking about the need to replace the Data Encryption Standard, or DES, in the early
1990s. We publicly indicated that a replacement might be developed as early as the 1993 reaffirmation
of DES. Serious planning at NIST began in 1996, culminating in a public call for comments on draft
AES requirements in January, 1997. We held a public workshop just a few months later, which was
significant because it helped to solidify the key sizes for AES at 128, 192 and 256 bits. (DES has a key
size of 56 bits.) Also, almost all of the workshop participants agreed that the AES should be available
on a royalty-free basis.

We published a call for candidate algorithms three years ago this month, and the response from the
global cryptography community has been truly gratifying. Leading cryptographers from around the
world attended our conferences in California, Rome and New York. They contributed invaluably to
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the selection process. We have received a great deal of help from individuals, academics, industry and
government. It has not been a short process. But this was necessary in order to build trust in the
encryption algorithm, because there is no simple way to determine if an algorithm is secure.

Of the original 15 candidate algorithms, five were primarily of American origin and the rest were
from overseas. We received submissions from places as diverse as Costa Rica, France, Japan, Korea
and Norway. NIST received comments from people in more than 40 countries during the AES public
analysis period.

Each of the submitters provided a detailed description of their algorithm, and implementations in
both the ANSI C and Java computer programming languages. NIST made these available to reviewers
worldwide, consistent with prevailing export regulations. Each submitter also agreed in writing to
make their algorithm available on a royalty free basis if it were selected for inclusion in the AES. Many
decided to make their inventions free regardless. We ended up with five excellent candidates, any one
of which could have provided the security we require for AES. More than 800 pages of public analysis
of these candidates is posted on our Web site at www.nist.gov/aes.

Our Information Technology Laboratory formed a cross-disciplinary team to review the comments.
The team has drafted a lengthy technical paper describing the selection process and the reasons for
our selection. This paper will go up on our Web site later today. The performance of the candidates
varied considerably, depending on whether it was implemented in hardware, software or on platforms
with limited processing and memory capabilities, such as smart cards.

We have remained carefully objective. This process has been an amazing, truly global competition,
reflecting the worldwide nature of information security needs. And it is a reflection of our long tradition
of work in the computer security arena. In the next month or so, we will formally publish a draft of
the AES standard in the Federal Register for public review and comment. We expect analysis of the
encryption algorithm to continue, a process which should help to build even more public confidence in
the standard.

8.3 AES: Questions and Answers

Background Information
1. What is the Advanced Encryption Standard (AES)?

The Advanced Encryption Standard (AES) will be a new Federal Information Processing Stan-
dard (FIPS) Publication that will specify a cryptographic algorithm for use by U.S. Government
organisations to protect sensitive (unclassified) information. NIST also anticipates that the AES
will be widely used on a voluntary basis by organisations, institutions, and individuals outside
of the U.S. Government - and outside of the United States - in some cases.

2. What algorithm has been selected by NIST, and how do you pronounce it?

NIST has selected Rijndael as the proposed AES algorithm. The algorithm’s developers have
suggested the following pronunciation alternatives: “Reign Dahl” “Rain Doll” and “Rhine Dahl”

3. Who submitted the algorithm, and where are they from?

The two researchers who developed and submitted Rijndael for the AES are both cryptogra-
phers from Belgium: Dr. Joan Daemen (Yo’-ahn Dah’-mun) of Proton World International and
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Dr. Vincent Rijmen (Rye’-mun), a postdoctoral researcher in the Electrical Engineering Depart-
ment (ESAT) of Katholieke Universiteit Leuven. Both gentlemen have been very active in the
cryptographic community.

. Is there a document that provides details on NIST’s selection for the AES?

NIST’s ad hoc AES selection “team” has written ‘Report on the Development of the Advanced
Encryption Standard (AES)’. It is a comprehensive report that discusses various issues related to
the AES, presents analysis and comments received during the public comment period, summarises
characteristics of the five finalist AES algorithms, compares and contrasts the finalists, and
presents NIST’s selection of Rijndael.

Complete AES-related information is available on the AES home page. The site includes NIST’s
Report on the Development of the Advanced Encryption Standard (AES); Rijndael specifications,
test values, and code; all public comments, including analysis papers from the various AES
conferences; and other “historical” AES information.

. Why is this announcement of the AES significant?

This announcement marks the culmination of a four-year effort involving the cooperation between
the U.S. Government, and private industry and academia from around the world to develop an
encryption technique that has the potential to be used by millions of people in the years to come.
NIST anticipates that this algorithm will be used widely - both domestically and internationally.

. Is the AES now an official U.S. Government standard?

No. NIST has simply announced the algorithm that will be formally proposed for incorporation
in a new Draft Federal Information Processing Standard (FIPS) for public review and comment.
Thereafter, the standard - revised, if appropriate - will be proposed to the Secretary of Commerce
for adoption as an official Government standard.

. When will a draft of the AES standard become available? Will the public be able
to comment on the draft standard?

NIST intends to publish a Draft FIPS for the AES approximately one to two months after the
AES announcement. At that time, a Federal Register notice will solicit public comments on the
Draft FIPS for the AES for a period of 90 days.

When the Federal Register publishes that notice, NIST will post the Draft FIPS for the AES
home page, along with information on how and where to submit public comments.

. When will the AES become an official standard?

The AES will become official after the 90-day public comment period concludes, NIST makes
appropriate changes to the Draft FIPS, and the Secretary of Commerce approves the FIPS.
Current estimates place this sometime in the spring of 2001 (i.e., April-June).

. In summary, what is the projected AES development timeline?

A tentative timeline for the remainder of the AES development effort is as follows:
October 2, 2000 Announcement of NIST’s selection for the AES.
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November 2000 Draft FIPS for the AES published for public comments. February 2001 Comment
period closes.

April-June 2001 (?)AES FIPS becomes official; conformance testing available.

This timeline is subject to change, depending on the publication date of the Draft FIPS and
other factors.

NIST’s Selection to Propose for the AES

1. Why did NIST select Rijndael to propose for the AES?

When considered together, Rijndael’s combination of security, performance, efficiency, ease of
implementation and flexibility make it an appropriate selection for the AES.

Specifically, Rijndael appears to be consistently a very good performer in both hardware and
software across a wide range of computing environments regardless of its use in feedback or
non-feedback modes. Its key setup time is excellent, and its key agility is good. Rijndael’s very
low memory requirements make it very well suited for restricted-space environments, in which it
also demonstrates excellent performance. Rijndael’s operations are among the easiest to defend
against power and timing attacks.

Additionally, it appears that some defense can be provided against such attacks without signifi-
cantly impacting Rijndael’s performance. Rijndael is designed with some flexibility in terms of
block and key sizes, and the algorithm can accommodate alterations in the number of rounds, al-
though these features would require further study and are not being considered at this time.
Finally, Rijndael’s internal round structure appears to have good potential to benefit from
instruction-level parallelism.

2. What about the other four algorithms that were not selected?

In terms of security, NIST states in its report that “all five algorithms appear to have adequate
security for the AES.” NIST is not saying that there is anything “wrong” with any of the other
four algorithms. However, when all of the analysis and comments were taken into consideration,
the NIST team felt that Rijndael was the best selection for the AES.

3. Why did NIST select only one algorithm to propose for the AES?

NIST considered the possibility of selecting multiple algorithms for the AES, since that was a
topic of discussion during the public evaluation periods. Many arguments were made both for
and against the inclusion of multiple algorithms in the standard, and NIST’s AES selection team
considered those comments prior to evaluating the algorithms.

Briefly, NIST’s AES selection team decided to select only one algorithm for several reasons.
First, other FIPS-approved algorithms (e.g., Triple DES) offer a degree of systemic resiliency,
should a problem arise with the AES. Second, multiple AES key sizes provide for increased
levels of security. Third, a single algorithm AES will promote interoperability and decrease the
complexity of implementations that will be built to comply with the AES specifications, hopefully
promoting lower implementation costs than a multiple algorithm AES. Fourth, a single AES
algorithm addresses vendors’ concerns regarding potential intellectual property costs.

NIST’s report offers more details.
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4. Is NIST designating a backup algorithm?

No. Based on public comments and discussion, NIST’s AES selection team decided not to desig-
nate a “backup” algorithm from among the other four finalists. Some vendors expressed concerns
that a backup algorithm would become a de facto requirement in products (for immediate avail-
ability in the future), leading to higher implementation costs and a potential decrease in the
interoperability of AES products. Also, given the uncertainty of the potential applicability of
future breakthroughs in cryptanalysis, it would be unclear whether a designated backup would
actually provide any resiliency for the main algorithm selection. Finally, NIST’s AES selection
team anticipated that other algorithms (whether specified in Government standards or not) will
continue to be available in commercial products.

NIST’s report offers more details.

5. How has the public been involved in the development of the AES?

From the beginning of the AES development effort, NIST has relied on the public’s participation,
including:

(a) assisting NIST in the design of submission requirements and evaluation criteria (including
minimum key and block size requirements and intellectual property requirements);

(b) developing and submitting candidate algorithms;
(c) analyzing the candidates and sharing those results with the public and NIST; and

(d) actively participating in several international conferences.

NIST also anticipates that the public will have very useful input on the Draft FIPS for the AES,
and in the on-going analysis of Rijndael. It is expected that such analysis will be presented and
published through various conferences such as CRYPTO, EUROCRYPT, ASIACRYPT, and the
Fast Software Encryption Workshop (FSE).

Security and Maintenance of the AES
1. Did NIST consider adding more rounds to Rijndael?

Prior to its evaluation of the five finalists, NIST’s AES selection team discussed the issue of
whether it should change the number of rounds for one or more of the algorithms, since that
issue had been raised by the public during the recent comment period. Some of those public
comments offered specific reasons for changing the number of rounds, although many did not,
and there seemed to be no agreement regarding which algorithm(s) should be altered (and if so,
exactly how that should be done).

NIST’s selection team recognised that changing the number of rounds would decrease the utility
of the large amount of analysis that has taken place during the last two years. For some algo-
rithms, it is not clear how the algorithm would be fully defined (e.g., the key schedule) with a
different number of rounds, or how such a change would impact the security analysis. Another
consideration was that none of the algorithms’ submitters proposed to change the number of
rounds in their algorithms, when they were given an opportunity to propose minor modifications
in the summer of 1999. For these reasons, NIST’s AES selection team decided it would be most
appropriate to base its evaluation and selection on the five algorithms as they were originally
submitted (i.e., without changing the number of rounds).

NIST’s report offers more details.
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2. Will the AES replace Triple DES and DES?

The AES is being developed to replace DES, but NIST anticipates that Triple DES will remain
an approved algorithm (for U.S. Government use) for the foreseeable future. Single DES is being
phased out of use, and is currently permitted in legacy systems, only.

Triple DES and DES are specified in FIPS 46-3, while the AES will be specified in a completely
separate FIPS. The status of the algorithms in each FIPS is handled separately by NIST.

3. Is NIST concerned that the algorithm is of foreign origin?

No. The complete algorithm specification and design rationale have been available for review
by NIST, NSA, and the general public for more than two years. From the beginning of the
AES development effort, NIST has indicated that the involvement of the international crypto
community has been necessary for the development of a high-quality standard.

4. Approximately how big are the AES key sizes?

The AES will specify three key sizes: 128, 192 and 256 bits. In decimal terms, this means that
there are approximately:

e 3.4 x 108 possible 128-bit keys;
e 6.2 x 1057 possible 192-bit keys; and
e 1.1 x 107" possible 256-bit keys.

In comparison, DES keys are 56 bits long, which means there are approximately 7.2 x 10'°
possible DES keys. Thus, there are on the order of 1021 times more AES 128-bit keys than DES
56-bit keys.

5. What is the chance that someone could use the “DES Cracker”-like hardware to
crack an AES key?

In the late 1990s, specialised “DES Cracker” machines were built that could recover a DES key
after a few hours. In other words, by trying possible key values, the hardware could determine
which key was used to encrypt a message.

Assuming that one could build a machine that could recover a DES key in a second, then it would
take that machine approximately 149 thousand-billion (149 trillion) years to crack a 128-bit AES
key. To put that into perspective, the universe is believed to be less than 20 billion years old.

6. Will NIST continue to monitor the algorithm’s security, and how will it handle
security issues that may arise in the future?

Yes. As is the case with its other cryptographic algorithm standards, NIST will continue to follow
developments in the cryptanalysis of Rijndael. Once the AES becomes an official standard, that
standard will be formally reevaluated every five years. Maintenance activities for the standard
will be developed at the appropriate time, in full consideration of the situation’s particular
circumstances. Should an issue arise that requires more immediate attention, NIST will act
expeditiously and consider all available alternatives at that time.
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7. How long will the AES last?

No one can be sure how long the AES - or any other cryptographic algorithm - will remain
secure. However, NIST’s Data Encryption Standard (DES) was a U.S. Government standard for
approximately twenty years before it was known to be “cracked” by massive parallel network
computer attacks and special-purpose “DES-cracking” hardware. The AES supports significantly
larger key sizes than what DES supports. Barring any attacks against AES that are faster than
key exhaustion, then even with future advances in technology, AES has the potential to remain
secure well beyond twenty years.

Implementation, Testing, and Use of the AES
1. Who will be required to implement and use the AES?

When the AES is published as a FIPS, the algorithm will officially be identified as an approved
encryption algorithm that can be used by U.S. Government organisations to protect sensitive
(unclassified) information. As is currently the case, those Government organisations will be able
to use other FIPS-approved algorithms in addition to, or in lieu of, the AES.

Commercial and other non-U.S. Government organisations are invited - but not required - to
adopt and implement the AES and NIST’s other cryptographic standards.

2. When will products implementing the AES be available, and will NIST test for their
conformance?

It is anticipated that commercial products implementing Rijndael will be available shortly after
the announcement. However, as indicated above, the AES itself will not become an official stan-
dard until sometime in 2001. When the AES becomes official, then NIST will have conformance
testing available for products that implement Rijndael.

That algorithm testing will be conducted under the Cryptographic Module Validation Program
(CMVP), run jointly by NIST and the Communications Security Establishment (CSE) of the
Government of Canada. Commercial, accredited laboratories test cryptographic implementations
for conformance to NIST’s standards, and if the implementations conform, then NIST and CSE
issue jointly-signed validation certificates for those implementations.

3. Are test values and reference code available for the AES?

Yes, test values and code provided by the Rijndael submitters are available, in order to assist
implementers.

4. Will implementations of the AES be exportable?

Yes, AES implementations will be exportable, and AES implementations in proprietary systems
will just need a one-time review prior to export. For full details, please contact the Department
of Commerce’s Bureau of Export Administration (BXA), which maintains the export regulations
related to cryptographic technology. More information on current export regulations is available
from BXA’s Information Technology Controls Division; TEL: (202) 482-0707, or FAX: (202)
501-0784.
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9 AES: Technical Detail

In this section we’ll consider Rijndael, the Advanced Encryption Standard. First we present some
mathematical background, then we’ll work through a specification of the algorithm, in a separate
document.

Definition 9.1 Let F' be a non-empty set with two binary operations, addition (denoted +) and
multiplication (denoted x, or by juxtaposition). Then (F, 4+, x) is called a field, if and only if
(1) (F,+) is an abelian group; so:

— closure

— associativity

— identity: there exists a zero element O € F such that foreacha € F,a+0=04+a = a.
— additive inverse: for each a € F, there exists —a € F such that a 4+ (—a) = 0.

— commutativity
(2) Multiplication is associative: for each a,b,c € F, (ab)c = a(bc).
(3) Multiplication is commutative: for each a,b € F, ab = ba.

(4) There is a unit element: there exists a non-zero element 1 € F' such that a x 1 =1 x a = a, for
each a € F.

(5) Every non-zero element of F' has a multiplicative inverse: for each a € F, a # 0, there exists
a '€ Fsuchthataxa ' =a"!xa=1.

(6) Addition distributes over multiplication: for each a,b,c € F:

— a(b+c¢) = ab+ ac
— (b4 c)a =ba+ ca

Remark 9.2 Examples of fields are rational, real and complex numbers, with the usual definitions of
addition and multiplication.

Definition 9.3 Let K = {0,1}. For a,b € K, define a+b = 0if a = b and a + b = 1 otherwise.
Definea-b=1ifa=b=1 and a-b = 0 otherwise. Call an element of K a scalar.

Remark 9.4 It is easy to see that (K, +,-) forms a finite field, called the Galois field of order 2, or
simply GF[2].

Remark 9.5 There is a Galois Field of order ¢, written GF[q], whenever ¢ is a prime power. For
AES, we are interested in GF[2'] and GF[2%] = GF[256].

96



Definition 9.6 Let K" = {ajas...a, | a; € K,1 <i <n}, and call an element v € K" a vector. For
u,v € K™, define u+v componentwise, using addition defined above on K for each component. Define
scalar multiplication of v € K™ by a € K in the obvious way. If v contains all Os, then v is called the
zero word.

Remark 9.7 It is easy to see that K™ is closed under addition and scalar multiplication.

Remark 9.8 Using addition and scalar multiplication defined above, K™ is a vector space (much more
on this later).

Remark 9.9 With an appropriate definition of multiplication, we’ll show that when n = 8, K® forms
the field GF[256].

9.1 Polynomials over K
Definition 9.10 A polynomial of degree n over K is a polynomial
Ant" + 12" 4+ g + ay,

where the coefficients o; € K and «,, # 0. The set of all polynomials over K is denoted K|z].
Polynomials over K are added and multiplied in the usual way, with a bit of care. For example,
xF + 2% = 0, so the degree of f(x)+ g(x) is not necessarily equal to the maximum of the degrees of

f(z) and g(x).

Exercise 9.11 Let f(z) =a2* + 2>+ 2+ 1, g(x) = 2 + 22 + z and h(z) = 2* + 22 + 1. Find
o f(z)+g(x)
o f(z)+ h(z)
o f(z)g()

Exercise 9.12 Let f(z) =z + 1. Find
o (f(x))?
o (f(x))’
o (f(x))!

Remark 9.13 As just seen, (f(z) + g())? = (f(2))? + (g(z))>.

Definition 9.14 Division Algorithm The usual long division process for polynomials over R
also works for polynomials over K. That is, if f(z), h(z) € K[z] with h(z) # 0 then there exist unique
polynomials

q(z),r(z) € K[z] such that f(x) = q(x)h(z) + r(z),

with r(x) = 0 or degree(r(z)) < degree(h(x)). As usual, g(z) is called the quotient and r(z) is called
the remainder.
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Remark 9.15 This is similar to what we already know about the quotient/remainder theorem and
Z.

Exercise 9.16 Let f(z) = 2% + 27 + 2% + 22 + z and h(z) = 2* + 2> + x + 1. Find ¢(z) and r(x).

9.2 Polynomials and words

Definition 9.17 The polynomial f(z) = a, 12" ' + a, 22" 2 + ... + a1z + ap of degree n — 1 over
K may be regarded as the word v = ay,_10,,_5 ... a1 of length n in K™.

Remark 9.18 If we fix the length n of words we wish to consider, then every word of length n
corresponds to exactly one polynomial over K of degree less than or equal to n — 1. The word with
all digits 0 is represented by the zero polynomial.

Exercise 9.19 Let C' = {00000, 11100,00111,11011}. Represent the words of C' with polynomials.

From the Division Algorithm, we have

Theorem 9.20 Given a (fizred) polynomial h(zx) of degree n, by associating f(x) with the remainder
r(z) of

f(@) = q(@)h(x) +r(x),

each polynomial f(x) corresponds to a unique polynomial of degree at most n—1, and hence to a unique
word of length n.
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Remark 9.21 Thus, given any polynomial f(z) € K[x], we can represent f(z) by a unique represen-
tative of degree < n from the set of residue (equivalence) classes of K|[x] modulo h(x).

Remark 9.22 We say that f(z) equals 7(z) modulo h(z), or that f(z) = r(z) (mod h(z)).

Exercise 9.23 Let h(z) = 2°+ 1. Compute the word v of length n = 5 corresponding to f(z) modulo
h(z) where f(z) = ' + 2% + 2% + 1.

Definition 9.24 We can avoid polynomial division when finding r(x) in the following way. Noting
that we are working mod h(z), then if h(x) = hg + hyx + ... + hy,_12"" ' + 2™, we can substitute for
2™ in f(x) using

" = ho+hiw+ ...+ h,12"" (mod h(x)).

Exercise 9.25 Repeat Exercise 9.23.

Definition 9.26 A polynomial p(z) € K|z| is irreducible if p(z) = q(x)s(x) implies either g(z) or
s(z) has degree 0 (that is, the only factors of p(z) are 1 and itself).

Remark 9.27 This is similar to the definition of a prime number over Z.
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Remark 9.28 We'll see that for AES, we use the following order 8 irreducible polynomial:

m(r) =2 +2* +2° + o+ 1.

9.3 AES Specification

Now, we’ll work through the document ‘A specification for Rijndael, the AES algorithm’, by Brian
Gladman. Note that in the rest of this section of the notes, the (sub)section numbers refer to the
appropriate (sub)section of the AES specification paper.

1. Notation and Conventions

1.1 Rijndael was designed to allow an input (plaintext) block size of 128, 160, 192, 224 or 256 bits.
AES is Rijndael with an input (plaintext) block size of 128 bits. In our examples, we will assume that
the input (plaintext) is 128 bits, the key is 128 bits and the output (ciphertext) is 128 bits.

1.2 A byte is 8 bits. We denote a byte as {bz, bg, bs, by, b3, ba, b1, bg}. A byte represents an element of
the finite field GF(256). We will use three representations of a byte:

e bitstring, for example {01100011};
e polynomial of degree at most 7, for example 2® + 2° + z + 1;
e 2-digit hex number, for example {63}.
To distinguish between decimal representations and 2-digit hex numbers, the hex numbers will be in

curly brackets, for example {zy}.

Exercise 9.29 Determine the bitstring and polynomial representations of the field elements {57} and

{83}.
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1.3 Rijndael operates on a state array. For AES it is a 4 x 4 array of bytes (usually written in hex
form). (Look at the start of the example on page 21 of the paper to see how the input is read into the
state array.)

1.4 The four bytes in each column of the state are sometimes thought of as a single 32-bit word.

2. Finite Field Operations

2.1 Addition of bytes (field elements) is as defined in the lecture notes as addition of polynomials over
K:

e To add two bitstrings, perform an XOR operation bitwise, for example
{01010111} & {10000011} = {11010100}.

e To add two polynomials, add the corresponding coefficients modulo 2, for example
@S+t +22+2+1) @@ +ax+1)=a" + 25 + 2t + 22

e To add two 2-digit hex numbers, convert to bitstrings and perform XOR operation, for example
{57} @ {83} = {d4}.

2.2 Multiplication of bytes (field elements) is as defined in our previous lecture, working modulo the
irreducible polynomial m(z) = 2® + z* + 2® + 2 + 1. Note that since this polynomial has degree 8 it
cannot be written as a single byte, so in the paper it is sometimes written as the bitstring 1{00011011}
or as the hex number 1{1b}.

Exercise 9.30 Determine the product {57} - {83}.
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2.3 Multiplication can also be performed by repeated shifts of bitstrings. Note that if you start with
a polynomial that does not have an 27 term, then mutiplication by z corresponds to left-shifting the
bitstring by one position.

Example 2° + 2 + 22 + 2 + 1 corresponds to the bitstring {01010111}. Multiplying it by z gives
27 + 2% + 2% + 2% + = which corresponds to the bitstring {10101110}.

Note that if your polynomial does have an 7 term, then you need to reduce mod m(z) after multiplying
by x.

Example {57} - {83} = (28 + 2* + 22 + 2+ 1) - (2" + 4+ 1) so we need to find (by shifting) z7{57},
{57} and 1{57} and then XOR these three bitstrings together. See Table 1 on page 4 of the paper.

2.4 Multiplication can also be performed by adding powers of a generator. A generator of a finite field
having n elements is an element g of the field for which the powers {g, g%, ¢%, g%, ..., g" '} generate all
n— 1 non-zero elements of the field. The field GF(256) can be generated by {03}. Thus every non-zero
element of the field can be written in polynomial form as (z +1)POVeT To multiply two field elements
a=g*and b= g% we get a-b=g*"?, so we can use tables of powers to do multiplication. Note that
here o + (3 is regular addition, not the & operation defined for field elements. Since the integer 255 is
{ff} and gt} = {01} for any generator, if a + 3 results in an integer larger than 255, then 255 can
be subtracted from the power before referring to Table 3, that is g@t% = ¢{ffi+{evt — glev}

Exercise 9.31 Determine the product {57} - {83} using Table 2 and Table 3.

We can also use the tables to find multiplicative inverses of field elements. Recall that for any generator
g, we have gt/f} = {01}, or in decimal form ¢?*> = 1. Thus we have that g{#}. gl/f}={eb = g{ff} — f01}
so the inverse of gt*} is gt//}={#} (where {} is a 2-digit hex number).
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Exercise 9.32 Find the inverse of {19}.

You can check your answer to Exercise 4 by multiplying the polynomials 2* 4+ 23 + 1 and 2° + 2* +
2?4+ 4+ 1.

2.5 We can define polynomials whose coefficients are elements of GF(256) (rather than just elements
of {0,1}). Some parts of the cipher use these but we won’t worry about them.

3. The Cipher
AES has the following general description:

Copy input into 4 x 4 state array.
Add initial round key to get the starting state.
Perform 9 rounds of the following:
Substitute Bytes
Shift Rows
Mix Columns
Add Round Key
Perform a final round of:
Substitute Bytes
Shift Rows
Add Round Key
Output final 4 x 4 state array.

3.1 The Substitute Bytes routine uses an S-box. Each byte {xy} in the current state array is replaced by
the value in row x, column y of Table 5 on page 8 of the paper. The values in the S-box are computed by
finding the multiplicative inverse of {xy} and then transforming that byte {b;bgbsbsbsbabiby} according
to the transformation given in matrix form as equation (3.1.2) on page 8 of the paper.

Example Determine the S-box replacement for {19}. The inverse of {19} is {3f} (see previous
example). The bitstring representation of {3f} is {00111111} = {b7bgbsbsbsbabiby}. Thus the new bit
seven is calculated as

by = 1b; @ 1bg @ 1b5 @ 1by @ 1bs & 0b2 B 0b; D0y ®0 =000 1B 11000 0®0 = 1.

Continuing in this way we see that {19} is replaced by {11010100} = {d4}.
See the example on page 21 for a full Substitute Bytes routine in round one of AES.
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3.2 The Shift Rows routine for AES takes the current state array, shifts the second row to the left by
1 position (wrapping around), shifts the third row to the left by 2 positions (wrapping around), and
shifts the fourth row to the left by 3 positions (wrapping around).

See the example on page 21 for a full Shift Rows routine in round one of AES.

3.3 The Mix Columns routine takes each column of the current state array and transforms it according
to the transformation given in matrix form as equation (3.3.1) on page 9 of the paper.

Example Determine the effect of Mix Columns on the column | {d4} {bf} {5d} {30} }T. Ac-
cording to equation (3.3.1) we must compute
[ {02} {01} {01} {03} {30}
{03} {02} {01} {01} {5d}
{o1} {03} {02} {o1} | | {bf}
| o1} {o1y {03} {02} | | {d4}

(2 + ) + 1(2% + 2t + 23 + 22 —|—1)+1(SL’ + 2 + 2t + 23 + 22 —1—33—1—1) (x+1)(z" + 25 + 2* + 2?)
(+ 1)@+ +x@ +at+ 23+ 22+ 1)+ 1@ "+ 25+ + 23 + 2+ o+ 1) + 1(a” + 2% + 2* + 2?)
P+ + (z+ )@+ + 22+ 22+ D)+ o@ +2° + 2 + 22 + 22 + 2+ 1) + 1(27 + 28 + 21 + 2?)
1@+t + 1@+t + P+ 22+ D)+ (e + D@7+ 2+ 2t + ¥+ 2 o+ 1) + 2(2” + 2% 4 2t + 2?)

[ 2"+ 2b 2?41
7+ 1
S+ a° + a4
22
[ {e5}
{81}
{66}
| {04}
Thus the new column is [ {04} {66} {81} {e5} }T

3.4 The Add Round Key takes the current state array and XORs each cell with the corresponding cell
in the round key array.

Section 4 of the paper explains how to calculate the key schedule. We won’t worry about it.
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Here is a summary of the first round for the Example given on page 21 of the paper.
Input = 3243{6a8885a308d313198a2e0370734

Key = 2b7el51628aed2a6abf7158809cf4f3c

32|88 |31 e0 2b | 28 | ab | 09 19 | a0 | 9a | €9
43 | ba | 31 | 37 o Te | ae | {7 | cf B 3d | f4 | c6 | 18
f6 | 30 | 98 | 07 151 d2 | 15 | 4f N e3 | e2 | 84 | 48
al | 8d | a2 | 34 16 | a6 | 88 | 3¢ be | 2b | 2a | 08

d4 | e0 | b8 | le

27 | bf | b4 | 41

After SubBytes: 1103 [5d 52

aec | f1 | e5 | 30

d4d | e0 | b8 | le
bf | b4 | 41 | 27
5d | 52 | 11 | 98
30 | ae | f1 | eb

After ShiftRows:

04 | e0 | 48 | 28
66 | cb | £8 | 06
8119 | d3 | 26
edb | 9a | Ta | 4c

After MixColumns:
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