1 Introduction to coding theory

1.1 Introduction

Coding theory is the study of methods for efficient and accurate transfer of information from one place
to another. It is different to cryptography we are no longer interested in secrecy, just accuracy and
efficiency.

Coding theory has many uses: minimising noise on CD players, data transfer on phone lines or the
internet, ethernet connections, data transfer from memory to CPU in a computer and space commu-
nication.

When transfering information from one place to another the information passes through a channel.
The channel is the physical medium through which the information is transferred, for example the
atmosphere or a phone line. Errors in the transferred information occur due to noise on the channel,
that is, undesirable disturbances which may cause information received to differ from information
transmitted. Noise can be caused by many things; for example, sunspots, lightning, poor typing, poor
hearing.

Coding theory deals with the problem of detecting and cor’rectmg transmission errors caused by noise
on the channel. The primary goals are to provide:

1. fast epcodmg of information;

2. easy transmission of encoded messages;

3. fast decoding of received message;

4. detection and correction of érrors introduced in the channél;
5. maximum transfer of information per unit time..

These goals are not necessarily compatible! Goal 4 is where we will spend most of our discussion.

Example 1.1 Consider normal conversation (codewords are english words, channel is atmosphere,
encoder is speech, decoder is hearing). We have in-built error correction: if you received the message
“apt natural, i have a gub”, you would probably know what is meant. You can use the redundancy
inherent in the message to infer its meaning.

 Redundancy is a fundamental component of coding theory. We will be adding extra bits of information
to each word before transmission in order to (hopefully) allow the effect of noise to be countered, and
the correct word to be inferred. The challenge is to add as little extra information as possible, while
still achieving the desired level of error detection and correction. '

Example 1.2 A 3-fold repetition code: Suppose we have four message words: 00, 01, 10, 11, and we
encode them by repeating them three times to get the four codewords 000000, 010101, 101010, 111111
After transmission, when we receive a word of length 6 we apply the decoding process of choosing the
codeword which is closest to the received word. This system allows the detectlon of an error in up to
two positions and the correction of an error in one position.
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- Example 1.3 The ISBN code: Every recent book should have an International Standard Book Num-
ber (ISBN). This is a 10-digit codeword Z1Ze%3%4Z5Z6L7LsL9%10 assigned by the publisher. The first
digit indicates the language (0 for English) and the second and third digits indicate-the publisher (for
example, 19 stands for Oxford University Press). The next 6 digits are the book number assigned by
the publisher. The final digit is a check digit, and is chosen so that the sum '
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is divisible by 11. (Note that the symbol X is used for the final digit to represent the number 10.)
This system allows the detection of two types of errors: a single incorrect digit, and the transposition
of two digits.

1.2 Basic definitions and assumptions

Definition 1.4 A g-ary code is a set of sequences of symbols where each symbol is chosen from a set
of ¢ distinct elements. The set of ¢ distinct elements is called the alphabet. A sequence of symbols is
called a word and a word that occurs in the code is-called a codeword. The length of a word is the
number of symbols in the word. A code in which each codeword has the same length, n say, is called
a block code of length n. The number of codewords in a code C' is denoted by |C|.

Example 1.5 The ISBN code is an 11-ary. block code of length 10 based on the alphabet
{0,1,2,3,4,5,6,7,8,9, X }.

Definition 1.6 2-ary codes are called binary codes, and are usually based on the alphabet {0,1}. In
this course, we focus on binary block codes, so the word code will refer to a binary block code unless
otherwise indicated.

Definition 1.7 A binary codeword is transmitted by sending its digits, one at a time and in order,
across a binary channel. A binary channel is symmetricif 0 and 1 are transmitted with equal accuracy;
that is, the probability of receiving the correct digit is independent of whether the digit transmitted
~ was 0 or 1. The reliability of a binary symmetric channel (BSC) is a real number 0 < p < 1, where p
is the probability that the digit sent is the digit received. The channel is perfectif p = 1.



We need to make a number of assumptions about the binary channel.

e We assume that any codeword of length n containing Os and 1s will be received as a word of
length n containing Os and 1s, although not necessarily the same as the original codeword. We
also assume that it is easy to identify the beginning of the first word received, and hence that
we can identify each received word.

e We assume that noise on a channel is scattered randomly, rather than in bursts. Thus, the
probability of any one digit being altered by noise is equal to the probability of any other digit
being altered. (This is perhaps not reasonable, but we will relax this later on.)

¢ We assume that no channel is perfect.

e If p is the probability that the digit received is the same as that sent, then 1—p is the probability
that the digit received is not the same as the digit sent. If any channel has p < 0.5, this can be
converted to a channel with 0.5 < p < 1 (by inverting each digit), so we will assume that we are
communicating via a symmetric binary channel with 0.5 <p < 1.

Definition 1.8 Let v be the codeword of length n transmitted, w be the word received and assume
communication is over a BSC with reliability p and with randomly scattered, noise. Let (v, w) be
the probability that if v is transmitted then w is received. If v and w disagree in d positions then we
have

B, (v, w) = P41 ~ p)*.

Exercise 1.9 Let C be a code of length 6, and suppose that we are transmitting codewords over a
BSC with reliability p = 0.95 and with randomly scattered noise.

1. For any codevvord v € C, what is the probability that v is received correctly'? CO, 75 > 20,7 £33
9. Let v = 101010 € C and & = 001010. What is @,(v,2)? (0.5 S (c.o) = 0.8 F5f

3. Let v = 101010 € C and w = 011010, What is @,(v,w)? (0, 7D ' (O« oJ’)L ~o0.0Q2
4. For any codeword v € C, what is the probability that a WOI‘d is recelved which differs from v in

one position (so one error has occurred)? <6>@ 9 5“) (0. 05 )

5. For any codeword v € C, what is the probability that a word is received which differs from v in
two positions (so two errors have occurred)? (/& ) (0.5 S-) ( &, 08~ ) z

6. For any codeword v € C, what is the probablhty that a word is received which differs from v in
two or more positions?

é) (o, ?5) “(0.057) é) /0/95)
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If the reliability of the channel was only p = 0.51, then the answers to questions 1 — 3 above would
be 0.0176, 0.0169 and 0.0162, respectively. It-is vital to have a reliable channel in order to have any

chance of receiving transmitted information correctly. In practice, channel reliability is usually higher
thari 0.95. '



1.3 Introduction to error detection

Suppose a word is received, and this word is not a codeword. Then we have detected that at least one
error has occurred in transmission.

Example 1.10 Let C; = {00,01,10,11}. Then C; cannot detect any errors in transmission.

Example 1.11 Let C; be a new code formed by repeating each codeword of C1, so
Cy = {0000, 0101, 1010, 1111}.

If a single error occurs in any transmitted codeword w, then the received word will not be a codeword.
This allows detection of any single error. If two errors occur in any transmitted codeword w, then the
received word may or may not be a codeword. So some sets of two errors will be detected, but not all
sets of two errors. otof — LU auq & Ledecd -

olol > 1000 will dedeed
We call C, a repetition code: in fact, it is a 2-fold repetition code, denoted Rep(2). An n-fold repetition
code is formed by taking the 2* Words of length k and forming the codewords of length kn by writing
down, n times, each word of length k.

Example 1.12 Let C3 be a new code formed from C; by adding a third digit to each codeword so
that the number of 1s in each codeword is even, so C3 = {000, 011,101,110}. The added digit is called
a parity-check digit, and it enables detection of any single error. This code will not detect any set of
two errors in a transmitted codeword.

Exercise 1.13 Consider a communication channel with reliability p = 1 — 1078, Consider the code
C consisting of all 2" words of length 11 (so there are no check digits). Suppose that digits are
transmitted at 107 digits per second. On average, approximately how many words are (undetectedly)
transmitted incorrectly per minute?
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Now let D be the code obtained from the code C in Example 1.13 by adding a parity-check digit
to each codeword of C, so that the number of 1s in each transmitted word is even. Using the same
reliability and rate of transmission, we will determine how many words are (undetectedly) transmitted
incorrectly per minute if the code D is used. The code D will detect a single error in a transmitted
word, so the probability of an incorrect word being received and not detected is

2 12 )
1 — P(0 errors) — P(1 error) =1 — (10 >p12(1 —p)? — ( ) >p11(1 ~p)!t ~ 6.6 x 107,

Words are transmitted at a rate of
107 digits 1 word o 60 seconds
1 second 12 digits 1 minute

Thus approximately 3.3 x 10~7 incorrect words are undeteotedly transmltted per mmute That is
approximately 1 word in 6 years.

=5 x 107 words per minute.

By adding only a small amount of extra information (redundancy) we drastically reduced the number
of incorrect words that slip through without detection.

1.4 Informatibn_rate of a code

In the previous subsection, we created two new codes, C; and Cs, by adding extra bits of information
(redundancy) to the codewords of C1, thus enabling error detection. In each case we added different
amounts of information, but each code can still only detect a single error. In some sense, the code C3
may be more efficient than the code C;.

Clearly, by adding extra bits of information to the words, we can improve error detection. Of course,
as check digits are added, more bits must be transmitted for each codeword, thereby i 1ncreas1ng trans-
mission tlme :

Definition 1.14 Many codes are obtained by taking the 2* words of length & and adding n—k check
bits to each word, thus giving codewords of length n. A code of length n, with 2% codewords is called

an (n, k) code. The number k is the dimension of the code, and we say that such a code has k message
bits. _

Definition 1.15 If C is any code of length n then the iﬁformation rate or rate of C is given by
1
-=log, |C|.
n 0g, |C|

Hence if C is an (n, k) code (so |C| = 2%) then the information rate of C' is k/n.

Exercise 1.16 Compare the information rates of the codes C and D from Exercise 1.13 and the
discussion following it.

Rk of code C= | ek of cede D= Tji

Thus, for a (reasonably) small reduction in efficiency/information rate, it is possible to incorporate
extra information, allowing detection of a single error.

6



1.5 Introduction to error correction

What can be done if the existence of an error is detected? Requesting the retransmission of a message
has a significant cost: we need to interrupt and delay transmission. It would be much better if we
could not only detect the ezistence of an error, but could also locate it. If we can locate where the
error occurred, then we can correct it by inverting the received bit.

Example 1.17 Let Rep(3) be the 3-fold repetition code formed by writing down each word of length
2 three times, so Rep(3) = {000000,010101, 101010,111111}. If a single error occurs in any digit of
any transmitted codeword v, then the received word w will not be a codeword. This allows detection
of a single error. Moreover, the received word must have originated from one of the codewords. It
differs from one codeword (v) in one place, and from the other codewords in more than one place.
Hence the most likely word sent was v, so it makes sense to decode the received word as v. This is an
example of error correction.

Exercise 1.18 Consider the code Rep(B) from Example 1.17. If the word 100010 is received, what is
the most likely codeword to have been sent? 0O o1 0 hes yay % g ¢ o 1610

The decoding method used in the previous example makes intuitive sense as a decoding mechanism: '
correct any received word to the codeword which differs from the received word in as few bit places
as possible. We can formally prove that this is valid. Recall that ®,(v,w) is the probability that the
word w is received if the codeword v is transmitted over a BSC with reliability p. In practice, we
know the word received w, but we do not know the codeword transmitted v. However, we know all
of the codewords, so can calculate ®,(u, w) for each codeword u € C. Clearly, we want to choose the
most-likely transmitted word, which means we choose the codeword v for which -

®p(v, w) = max{®y(u,w)|lu € C}.
We can choose such a codeword via the followingv theorem:

Theorem 1.19 Suppose communication is via a BSC with reliability p, 0.5 <p < 1. Let v; and vy be
codewords of length n, and w a word of length n. Suppose that vy and w disagree in dy positions, and
that v and w disagree in dy positions. Then

®p(v1, w) < vz, w) if and only if dy > da.

Proof: We have : : . < pab(v., W
. ép('vl,’LU) S ®p(v27w) 'fc ffog(vq/w) ~ f (.\/Z/ >
— p’n—dl(l - p)d1 S pn—dz(l _ p)dz /[/L»”—A V'I_ i S (/('OSfU’ OLQ
- ;\ da—d1 W 'HA-M Vi i\ $
= {1 w) = Vv
o S dy < dy V
. P ' : .
(since - >1). . N 0O

Thus, as we wish to maximise ®,(u, w), we correct the received word w to the codeword v which differs
from w in as few positions as possible.




Exercise 1.20 Suppose that w = 0010110 is received over a BSC with p = 0.9. Which of the following
codewords is most likely. to have been sent? :

. 1001011,1111100, 0001110, 0011001, 1101001.
What would have been the case if the channel instead had reliability p = 0.517

1.6 Weights and distances

We need an efficient way of finding which codeword is closest to a received word. If there are many
codewords, it’s not practical to check every received word against every possible codeword. (For
example, the code used on the Voyager Mission had 2'? = 4096 codewords.)

Recall that K™ consists of all the binary vectors (words) of length n.

Exercise 1.21 -If u, v, w are words in K", show that
1. v+w=0iff v=1w;

2. if v is transmitted over a BSC and w is received, then u = v + w will be a word containing al
in exactly those places in which v and w differ.
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Definition 1.22 Given two words v and w in K™, the corresponding error pattern or erroris defined
by v = v+ w, and is 1 in exactly those places in which v and w differ.

Definition 1.23 Let v € K™ be a word of léngth n. Then the weight or Hamming weight of v is the
number of occurrences of the digit 1 in v. We denote the weight of a word v as wt(v).

Definition 1.24 The Hamming distance d(u,v) between two words u,v € K™ is the number of places
in which their bits differ. ’

lﬂ\(@/\ﬁ = w%<w+v>
: 8



Exercise 1.25 Let z = 111001, y = 001111 and z = 101010. Find wt(z), d(z,y) and d(y, 2).
wf(?A
Llx, 5 w«e(wgy (ool =%
Ay, 2) = HA(g42) ,ué(loo;ol) =3

Hamming distance satisfies the properties of a metric. That is, if z,y, 2 € K", then

1]
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1. d(z,y) > 0

(z,
2. d(z,y) =0ifz =1y

3. d(z,y) = d(y,z) (symmetry)
4. d(z

d(z,z) < d( y) + d(y, ) (triangle inequality)

- Note that if v and w are codewords and u is the error pattern u = v+w, then we have d(v, w) = wt(u).
That is, d(v, w) = wt(v + w). ’
- Ifu=v+w, then the probability. formula from Theorem 1.19 can be rewritten as

@p(v, ’LU) — pn—wt(u)(l _ p)wt(u)'

We refer to ®,(v, w) as the probability of the error pattern u = v + w.

1.7 Maximum Likelihood Decoding

Now we are ready to descmbe more formally how decodmg is done in general. There are two commonly
used approaches to decoding.

Definition 1.26  Complete Mazimum Likelihood Decoding or CMLD

Let C be the set of codewords, v € C be the codeword transmitted, and w the word received. If there
" is a unique codeword v € C for which d(v,w) < d(v1,w) for all v; € C,v1 # v, then we decode w as
v. If there are two or more codewords which are all closest to w, then we arbitrarily select one of the
equally closest codewords and decode w as that arbitrary choice.

Definition 1.27  Incomplete Mazimum Likelihood Decoding or IMLD ‘ :
Again, if there is a unique word v in C closest to w then we decode w as v. However, if there are two
or more codewords which are all equally close to w, then we request retransmission.

Unless stated otherwise, we will always assume that IMLD is being used.

Note that with Maximum Likelihood Decoding, we are always going to select the codeword which is
closest to the received word. This is not necessarily the same as selecting the correct or transmitied



codeword: it may be the case that so many errors occurred in transmission that the codeword closest
to the received word is not the same as the codeword which was transmitted. '

One of our aims is to ensure that decoding to the closest codeword will (almost) always produce the
correct codeword.

Using IMLD, the codeword v; € C closest to the received word w is the codeword for which d(v1, w) is
least. By Theorem 1.19, this codeword v; has the largest probability ®,(v;,w) of being the codeword
transmitted. Since d(vi, w) = wt(v; + w), we can restate the result of Theorem 1.19 as

&, (v1, w) < Bp(vs, w) iff wt(vy +w) = wi(ve + w).
That is, the most likely codeword sent is the one with the error pattern of smallest weight.

Thus given a received word w, the decoding strategy for IMLD is to examine the error patterns
u = v+ w for all codewords v € C and decode w as the codeword v* which gives the error pattern u*
of smallest weight. '

Example 1.28 If C = {0000, 1010, 0111}, construct an IMLD table showing, for each possible received
word w, to which codeword w will be decoded. Remember that retransmission will be requested in
the event that there is no unique codeword which minimises the weight of the error pattern.

received _ error patterni% most likely
word codr eorTS codeword
w. | 0000+ w [ 1010 + w {011V % w v
0000~ | 0000 1010 | 0111 ~0000.
Qo001 | o001 | 1011 | 0110 0000 | | (0000 C)
0010 | 0010 1000 - | 0101 —— / o’kooﬂﬁ
0011 0011 1001 0100 0111 o =00,
Q100 0100 1110 0011 | . 0000 z %Ooo /
0101 0101 1111 0010 0111 |
. 0110 0110 1100 | (000D 0111
0111 0111 1101 0000 0111
1000 1000 | 0010 1111 ——
1001 1001 0011 1110 ——
1010 1010 0000 1101 1010
1011 1011 0001 1100 1010
1100 1100 | 0110 | 1011 ——
1101 1101 0111 | 1010 0111
. 1110 1110 0100 1001 1010
M possible | 1111 1111 0101 1000 0111

ng ey LT
When establishing a BSC and a code, it is necessary to choose the value of n (length of the codewords)
and the actual codewords C. Some choices of n and C are better than others. There are many criteria
that are used in the choices of n and C. For now we would like to choose codewords C' such that
 IMLD works reasonably well. To do that we need to determine, for each codeword v, the probablhty
that IMLD will correctly conclude that v was transmitted.

Given n and C, we can calculate the probability ©,(C, v) that if v € C is transmitted over a BSC with
reliability p then IMLD correctly concludes that v was sent.

10



Definition 1.29 Calculating the reliability of IMLD
Assume that a codeword v € C is transmitted over a BSC with reliability p. Let

L(v) = {z | z € K™ and z is closer to v than to any other codeword in-C}.

Then ©,(C,v) is the sum of all the probabilities ®,(v,w) as w ranges over L(v). That is,

v) = Z ®,(v,w).

weL(v)

L(v) is precisely the set of words in K™ for which, if received, IMLD will conclude that v was sent.

. We can find L(v) from an IMLD table, such as the one given above, by comparing the received words

with the most likely codewords.
Note that the definition of ©, ignores the effect of retransmission when decoding is ambiguous (so the
received word might be correctly decoded on second transmission), but ©, is still a reasonable lower

" bound on the probability of correct decoding.

Example 1.30 Suppose p = 0.9, n = 4 and C = {0000,1010,0111} (as in Example 1.28). Compute
,(C, 0000).

For v = 0000, L(v) = {0000, 0100,0001}. Thus

0,(C,0000) = &,(0000,0000) + &,(0000,0100) + &,(0000, 0001)
p*+ (1 —p)+ (1 —p)
— 0.8019 '

Exercise 1.31 Let.p = 0.9, n = 4 and C = {0000, 1010,0111} (as in Examples 1.28 and 1.30.
Compute 6,(C,1010) and @p(C, 0111). ' :

L<;_:L<S‘Tf-?>> : é@f'o?@ oll, 11103

e T
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=0, 867
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O,

~0
.

L.
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We can see that for C = {0000,1010,0111}, IMLD works reasonably well if 0111 is transmitted, but
performs poorly if 0000 or 1010 is transmitted. Thus we see that C is not a very good choice as a
code.

1.8 Error detection and correction
Now we can formalise the definition of error detection.

Definition 1.32 We say that a code C' detects the error pattern u if and only if v+u is not a codeword,
for every v € C.

not detect the error pattern uz = 100
GO( 4+ O(O = O %C OC| + (00 = 10(6—C
S C Aots od:
Qefeck dbe 2 paffn
| OD .

1
W‘R
N

(C1 +o (O
(O 4+ 6(0 [oog'g
Fmtfm« O

A good method of determining which error patterns a code can detect is to first determine which error
patterns it cannot detect. Given a code C and any pair of codewords v and w, if e = v + w then C
cannot detect the error pattern e (as v+e = w which is a codeword). Thus the set of all error patterns
which cannot be detected by C is the set of all words that can be written as the sum of two codewords.

Exercise 1.34 Find all error patterns which can be detected by C' = {1000,0100,1111}.

jloce +1((1 = S (U]
G loo Il = [O(i

CXA. OZ—Q&C":‘L Ay <I'Y\>" Fc,{‘f(/‘/\ I I( {’ OO ol Ol{}‘

For certain codes, we can calculate some of the error patterns which the code can detect, without
needing to go through any of the above calculations. We make use of the concept of the distance
between two codewords, defined in Definition 1.24, and define the concept of the distance of a code.

Definition 1.35 The distance (or minimum distance) of a code is the smallest distance between any
pair of distinct codewords. That is, we define ¢ to be the distance of a code C if

§= min d(v,w).
v,weCwFw

12




We know that d(v,w) = wt(v + w), so § is the smallest value of wt(v + w) as v, w, v # w range over
all possible pairs of codewords.

An (n, k) code with minimum distance § will sometimes be written as a (n, k, 6) code.

Exercise 1.36 Find the distance of the code C' = {0000, 1010,0111}.

0004 |olo :QOQ o

Oo00O & Ol ( = ot
fo( O+oi'(('__ [ {O1
Exerc1se 1.37 Find the d1stance of an n-fold repetition code. .
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We now have a very important theorem, which makes direct use of the definition of distance given
above.

Theorem 1.38 Let C be a code with minimum distance 6. Then-C will detect all non-zero error

patterns of weight less than or equal to 6 — 1. Moreover, there is at least one error pattern of weight 6
which C will not detect.

Proof: Let u be a non-zero error pattern with wt(u) < 6 — 1, and let v € C. Then d(v,v +u) =
wt(v + (v + u)) = wt(u) < 8. Since C has distance §, v +u ¢ C. Therefore C' detects u.

From the definition of &, there exist codewords v, w € C' with d(v,w) = 5. Consider the error pattern
u=v+w. Noww=1v+u € C, soC will not detect the error pattern v of weight 4. (]

Note that a code C with minimum distance § may possibly detect some error patterns of weight § or
more, but it does not detect all error patterns of weight ¢.

Exercise 1.39 Show that the code defined in Exercise 1.36 detects the error pattern 1111 of weight
4, but find an error pattern of Welght 2 which C' does not detect.

Ooooq—([” -~ {1t %Q Se OQQH’(]L_C ﬂe&fvvffqﬁ((fm /”/
[O(O +(If’ OtLol %C_ Ewé‘ C Aces j_c,glcc_cF ff‘(&wr*
OlLI( J(1ll = [Coo &C pathon OO,

Definition 1.40 A code C is said to be z error detecting if it detects all error patterns of welght at
most z, and does not detect at least one error pattern of weight = + 1. By Theorem 1.38, if C has
distance & then C is § — 1 error detecting.

Vi

Equivalently, for a code C to be e error detecting, it must have distance e + 1.

13



Exercise 1.41 Let C = {0000,1010,0111}.
1. What is the distance of C? f) = 2
2. C is z-error detecting. What is 27 X = /

3. Fmd all error patterns that C does detect, and hence show that 1010 is the only error pattern
of weight 2 that C' does not detect.

Frowe Crcrese 1136 , & comed dedect § lo(o,O/((/‘iro /%

S C o dedeed KT flotoott (o]

Now we can formalise the definition of error correction.

Definition 1.42 A code C corrects an error pattern u if, for all v € C, v + u is closer to v than to
any other word in C. :

This is equivalent to saying that C corrects the error pattern w if adding u to any codeword v results
in a word which is still closer to v than to any other codeword.

Definition 1.43 A code C is said to be z. error correcting if it corrects all error patterns of weight at
most z, and does not correct at least one error pattern of weight z + 1. -

Giver a codeword v we can think of a “sphere” in n dimensions of radius z centred on the codeword
v by saying that another word w falls within this sphere iff w is within distance z of codeword v.
Intuitively, C' is & error correcting if it possible to take each codeword in C, draw a “sphere of radius

7" over each codeword, and have no two spheres intersect. Then any received word which falls within '

-the sphere of a codeword will be corrected unambiguously to the codeword on which the sphere is
based. :

Exercise 1.44 If Cl.ls_\afeede—and—‘vﬂ@ € C, list all words within a sphere of radius 2 of v. -



The process of IMLD picks the “most—l}lkely” codeword. When we relate error correction and the
distance of a code, we need to ensure that the most-likely codeword is the correct codeword, and not
just the closest codeword.

Let vy, vs be codewords with d(vy,ve) = &. Clearly, if v; is transmitted and errors occur in § — 1 of the
places in which v; and v, differ, the received word will be the same as if v, had been transmitted and i
a single error had occurred in the other place in which v; and v, differ. Thus § — 1 errors in v; can be
equivalent to 1 error in V2. Slmﬂarly, § — 2 errors in v; can give the same received word as 2 errors in* \
V9, and so on. - \
/

Suppose that we are using a code C with distance § and a codeword v is transmitted and the word w
is received where d(v, w) = § — 1. Then we can detect that up to § — 1 errors have occured. However,
care must be taken with error correction since § — 1 errors in v may be indistinguishable from just
- 1 error in a different codeword and so in choosing the closest codeword to the received word w, the
process of IMLD may return the incorrect codeword. .
Example 1.46 Let C = {000,111}, so C has distance 3 and hence can detect all error patterns of
weight at most 2. If the word w = 010 is received, it is more likely (and error correction will assume)
that the error pattern which occurred was 010 (of weight 1, with transmitted word 000), rather than
an error pattern 101 (of weight 2, with transmitted word 111).

We now state a fundamental theorem which forms the basis for error correcting codes.

Theorem 1.47 Let C be a code with minimum distance 6.

If § is odd, then C can correct all error patterns with w'eight less than or equal to -

If & is even, then C can correct all error patterns with weight less than or equal to —

Theorem 1.47 can be justified intuitively. If C' has distance §, then any two codewords are at least -
distance & apart. If § is odd and up to (§ — 1)/2 errors occur, or if 6 is even and up to d/2 errors occur,
then the received word will not be a codeword, so it is clearly possible to detect that this number of
errors has occurred. In most of these cases, it is also possible to correct the error, by selecting the
unique codeword which is closest to the received word. However, if § is even and /2 errors have
occurred, then it is possible for the received word to be equidistant from two distinct codewords. Thus
it may not be possible to unambiguously select the closest codeword, so error correction may not work.

' §—1
Using |z] to denote the integer part of z, we see that a code C of distance d can correct up to L 5 J

: 0—-1 . '
errors. We note that there is at least one error pattern of weight 1+ 5 which C does not correct.

A code of distance § may correct some error patterns of weight larger than that specified in Theorem
1.47. However, it will not correct all such error patterns.

15



Exercise 1.48 Assume that the information to be transmitted consists of all possible strings of length
3. Label the message bits z1, zo and z3, and let C contain codewords of length n = 6 formed by
appending three extra digits z4, x5 and zs, so that each of the following sums are even:

Zo + T3 + 24, T1+ T3 + Ts, T1+ T2+ Te.

1. List the codewords of C.
2. What is the distance of C?
3. How many errors can C detect and correct?

4. What is the information rate of C?7

lo..ovo‘l J: g Jﬁ;}'ﬁdg’z | {‘Zs«(’(. 7
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Exercise 1.49 Repeat the previous example, but instead form a code D by repeating each of the
three message bits three times.

09g 000 0D - Lo fecd 2 | e 4

(0. Lo Lo (f*/z . -}a ~ =l é_ |
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Exercise 1.50 Compare the rates of codes C and D from the two previous examples..
C s ot 2 O%‘c/refva(

Later, we will see how to construct a family of codes called the Hamming codes. We will see that the
 Hamming code of length 7 is 2 error detecting and 1 error correcting, but has information rate 4/7..
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2 Linear codes I

The essential goal of coding theory is to find codes which transmit information at reasonable rates,

et also detect and correct most transmission errors. In this section we discuss a broad class of codes

which provide these features, based heavily on linear algebra.

2.1 Introduction to linear codes

Definition 2.1 A linear code is a code in which the sum (mod 2) of any two codewords is also a
codeword. That is, C' is linear iff for any pair of codewords v,w € C, we also have v+w € C.

Almost every code we consider for the remainder of this course will be linear.

Exercise 2.2 Show that C; = {0000,0101, 1010, 1111} is linear, but that

G, = {0000, 1001,1010,0011, 1111} is not linear. .
- _ O % 2
ocoe A4 v =V C,o Lt #0000 = (to
OLOl 4 (O = J(\) - so Cy s mof [ ear.

C‘\ (38 Ilz\av

Exercise 2.3 Explain why any'linear code must contain the zero word.

vV 4+ Vv = O
S~ ~

Exercise 2.4 Five of the eight codewords of a linear code are _
‘ X “A , < .
0001111,0110101, 1010011, 1011100, 1100110.

Find the remaining three codewords.
elol+Nol=Tole
oll [oto =x1+9
x4z = |10 L 00(

One of the advantages of a linear code is that its distance is easy to find.

Theorem 2.5 For any linear code C, the distance of C is the weight of the nonzero codeword of
smallest weight.

Proof: Let C be acode of distance.d, and let w be the nonzero codeword of smallest weight. Certainly,
§ < wt(w). Assume that there are two codewords vy, v € C such that § = d(v1,v2) =d < wt(w). As -
C is linear, v = vy + v, must be a codeword, of weight d(vi,v2) < wt(w). But this contradicts the
assumption that w is the nonzero codeword of smallest weight. O

Exercise 2.6 Find the distance of the linear code C' = {0000, 1100, 0011, 1111},

o
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It is easy to find the distance of a linear code. Other advantages of linear codes include:

1. For linear codes, there is a procedure for IMLD which is simpler and faster than we have seen
so far (for some linear codes, there are very simple decoding algorithms).

2. Encoding using a linear code is faster and requires less storage space than for arbitrary non-linear
codes.

3. The probabilities ©,(C, v) are straightforward to calculate for a linear code.
4. Tt is easy to describe the set of error patterns that a linear code will detect.

5. It is much easier to describe the set of error patterns a linear code will correct than it is for
arbitrary non-linear codes.

Since a subset U C K™ is a subspace of K™ iff U is closed under addition, we conclude that C' is a
linear code iff C is subspace of K™.

Thus, for any subset S of K™, the span of S is a linear code, C = (S).

The dimension of a linear code is the dimension of the corresponding subspace of K™. Similarly, a
basis for a linear code is a basis for the corresponding subspace of K™.

If a linear code C has dimension k and if B = {v,vs,..., v} is a basis for C, then each codeword w '
in C can be written as

W= QU1 + GgUa + ... + Uk

for a unique choice of digits o, o, . » ,ai. Noting that each a; is 0 or 1, for 1 < ¢ < k, there are 2"
distinct choices for oy, as, .. ., ak.

We thus have the following very important theorem:

Theorem 2.7 A linear code of dimension k contains precisely 2" codewords.

Thus, using the notation introduced earlier in the course, a linear code with length ﬁ, dimension k
and distance § is an (n, k) linear code of distance 4, or equivalently, an (n, k,d) linear code. Such a
- code has information rate k/n.

2.2 Dual codes

We now see how to derive a new code from a given linear code, using the orthogonal complement.

Definition 2.8 For § C K", if C = (S), then we write C+ = S and call C* the dual code of C.

Theorem 2.9 Let C = (S) be the linear code generated by a subset S of K™. If the dimension of C
“is ky and the dimension ofCJ' 15 ko then we must have k1 -+ ko = n.

Exercise 2.10 Suppose that C is a (9,4) linear code. How many codewords are in C? How many
codewords are in C*+?

[ = 2" =16 |t =32
don o6 C = Y 6432 F S
'atm«oé:c_—L:‘Sr 18
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2.3 | Bases for codes

In this section we develop methods for finding bases for a linear code C = (S) and its dual C*.

Algorithm 2.11  Algorithm for finding a basis for C = (S).
Let S be a nonempty subset of K™ Form the matrix A whose rows are the words in S. Use EROS
to find a REF of A. Then the nonzero rows of the REF of A form a basis for C' = (S).

Algorithm 2.11 works because the rows of A generate C, and EROS simply interchange codewords
(rows) or replace one codeword (row) with the sum of two rows (another codeword) giving a new
set of codewords which still generates C. Clearly the nonzero rows in a matrix in REF are linearly
independent. Note that Algorithm 2.11 does not produce a unique basis for C' = (S), and there is no
guarantee that the words in the basis occur in the given set .S.

Exercise 2.12 Use Algorithm 2.11 to find a basis for the linear code C' = (S) where
S = {11101, 10110, 01011 11010}.

Jtiel o '“(C,D(( e’
Mo Lo > C)lo\:\ > Oé\
ot ol 00 OO
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Now we give an algorithm for finding a basis for the dual code C*t. This algorithm incorporates
Algorithm 2.11, so it also gives a basis for C.

Algorithm 2.13  Algorithm for finding bases for C and C*.

Let .S be a nonempty subset of K™, Form the matrix A whose rows are the words in S. Use EROS to
place A in RREF. Let G be the k x n matrix consisting of all the nonzero rows of the RREF. Then
the rows of G form a basis for C. Let X be the k X (n — k) matrix obtained from G by deleting the
leading columns of G. Form an n x (n — k) matrix H as follows: '

1. in the rows of H corresponding to the leading columns of G, place, in order, the rows of X

2. in the remaining n — k rows of H, place, in order, the rows of the (n — k) x (n — k) identity
matrix I,_x.

- Then the columns of H form a basis for C+.
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Here is a more intuitive description of Algorithm 2.13. Start with matrix A, and use EROS to convert:

P

—_— A——><(g> in RREF".

Then permute the columns of G to form G — G' = (I; X).
Form a matrix H' as follows: - )
| H = .
(%)

Apply the inverse of the permutation applied to the columns of G to the rows of H' to form H.

Example 2.14 Consider the code C = (S) where S = {11010,10001,01001,11000}. Use Algorithm
2.13 to find a basis for C and a basis for C*. '

11010 11010 11010 11010
A_10001_+01011_)01'011_)01011
“101001 01001 0 0O010. 00010

11000 00010 0 0010 0 00 0O

10001 ®&>o‘01 |
01011 0 0 01 Dy ;

—_ 00010 =100 0 @ 0 which is in RREF
0 0000 0 0000

A basis for Cis {10001 01001 00010}

t 293§
0001 100[|01
NowwehaveG=<OCDO 0 1),sowehaveG’=<O 1 0[/01 =(I X)
00 0(Do 00100 )
: 01
Thusk=3and X={ 0 1 |.
0 0

The rows of X are placed in the first three rows, respectlvely, of the 5 x (5 — 3) matrix H'. The
remaining rows of H' are filled with the the 2 X 2 identity matrix. Thus

O 1
0 1
andso H=

Thus a basis for C*+ is {00100, 11001}.~

l
T
k
Yy
>

01
01
10
0 0
01

Exercise 2.15 Verify that for the previous example, GH = 0.
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We make a few comments to justify why Algorithm 2.13 works. The n — k columns of H are linearly
independent and dimC+ = n — dimC = n — k, so the columns of H are a basis for a subspace of the
correct dimension. Furthermore,

X

Y
G'H = (I; X)<In—k

)-x+x-0

We apply the same permutation to the columns of G’ and to the rows of H' to obtain G and H, so
we still get GH = 0. Thus each row of G is orthogonal to each column of H, and so if the rows of G
form a basis for C then the columns of H must form a basis for C*.

Exercise 2.16 If $ = {101010,010101,111111,000111, 101100}, find a basis B for the code C' = (S5),
and find a basis BL for the dual code C+. Determine the number of codewords in each of C and C*.
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