SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401/3901 Problem Worksheet Semester 1, 2025, Week 10

- (1) Determine where the function $f(z) = z e^{-z} + 1 i$ is conformal.
- (2) Find all points where the function $f(z) = \sin z$ is conformal.
- (3) Suppose $f: \mathbb{C} \to \mathbb{C}$ is analytic at a point $z_0 \in \mathbb{C}$. The angle of rotation of f at z_0 is defined to be the argument of $f'(z_0)$.

We motivate this definition as follows: take a curve C passing through z_0 . Let z(t) be a parametrisation of the curve in a neighbourhood of z_0 ; namely

- -z(t) on [a,b] traces a portion of C, and
- some $t_0 \in (a,b)$ returns $z(t_0) = z_0$.

By the chain rule $\frac{d}{dt}(f(z(t))) = f'(z(t))z'(t)$. Thus

$$\arg[f'(z(t_0))] = \arg[f'(z(t_0))] + \arg[z'(t_0)].$$

The LHS is a tangent vector of the curve f(C) at $f(z_0)$ and $z'(t_0)$ is a tangent vector of C at z_0 . Thus $\arg[f'(z(t_0))]$ measures the change of argument. Observe this quantity is independent of the curve C we chose to analyse. See Section 112 in the Brown and Churchill textbook for further discussion).

Show that the angle of rotation at a nonzero point $z_0 = r_0 \exp(i\theta_0)$ under the transformation $w = z^n$ (n = 1, 2, ...) is $(n - 1)\theta_0$. Determine the scale factor of the transformation at that point.

- (4) Find a function harmonic in the upper half of the z-plane, Im z > 0, which takes the values on the x axis: G(x) = 1 for x > 0, and G(x) = 0 for x < 0.
- (5) Find a function harmonic inside the unit circle |z| = 1 and taking the values $F(\theta) = 1$ for $0 < \theta < \pi$, and $F(\theta) = 0$ for $\pi < \theta < 2\pi$ on its circumference.