SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401 Problem Worksheet Semester 1, 2025, Week 11

(1) Use the definition of limits of sequences, given in Lecture 30 page 3, to verify that the limit of the sequence

$$z_n = -2 + i \frac{(-1)^n}{n^2}$$
 $(n = 1, 2, ...).$

converges to -2.

Solution: Notice that

$$|z_n - (-2)| = \frac{1}{n^2}$$

Thus, for each $\varepsilon > 0$,

$$|z_n - (-2)| < \varepsilon$$
 whenever $n > n_0$,

where n_0 is any positive integer such that $n_0 \ge \frac{1}{\sqrt{\varepsilon}}$.

(2) Find the Maclaurin series expansion of the function

$$f(z) = \frac{z}{z^4 + 9}$$

and calculate the radius of convergence.

Solution: We want the Maclaurin series for

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \cdot \frac{1}{1 - (-z^4/9)}$$

Replace just z by $(-z^4)/9$ in

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \qquad |z| < 1.$$

as well as its condition of validity, to get

$$\frac{1}{1 + (-z^4/9)} = \sum_{n=0}^{\infty} \left(\frac{-z^4}{9}\right)^n = \underbrace{\sum_{n=0}^{\infty} \frac{(-1)^n}{9^n}}_{\text{Final result}} z^{4n} = \underbrace{\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{2n}} z^{4n}}_{\text{Extra simplification}}, \quad |z| < \sqrt{3}.$$

Then if we multiply through this last equation by $z/9 = z/3^2$, we have the desired expansion:

$$f(z) = \frac{z}{3^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{2n}} z^{4n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{2n+2}} z^{4n+1}, \quad |z| < \sqrt{3}$$

(3) Find the Taylor series of the function

$$f(z) = \frac{1}{1-z}$$

about the point i and provide the radius of convergence.

Solution: The function $\frac{1}{1-z}$ has a singularity at z = 1. So the Taylor series about z = i is valid when $|z - i| < \sqrt{2}$.

To find the series, we start by writing

$$\frac{1}{1-z} = \frac{1}{(1-i) - (z-i)} = \frac{1}{1-i} \cdot \frac{1}{1-(z-i)/(1-i)}.$$

Now we can replace z by (z-i)/(1-i) in the known expression

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (|z| < 1)$$

and then multiply through by $\frac{1}{1-i}$. Therefore, the Taylor series is

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} \qquad (|z-i| < \sqrt{2})$$

(4) Show that when 0 < |z| < 4,

$$\frac{1}{4z - z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}.$$

Solution: Suppose that 0 < |z| < 4. Then 0 < |z/4| < 1, and we can use the know expansion

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \qquad |z| < 1.$$

That is, when 0 < |z| < 4

$$\frac{1}{4z - z^2} = \frac{1}{4z} \cdot \frac{1}{1 - \frac{z}{4}} = \frac{1}{4z} \sum_{n=0}^{\infty} \left(\frac{z}{4}\right)^n = \sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$
$$= \frac{1}{4z} + \sum_{n=1}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$
$$= \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$$

(5) Write the two Laurent series in powers of z that represent the function

$$f(z) = \frac{1}{z(1+z^2)}$$

in certain domains, and specify those domains.

Hint 1: For one domain you should get

$$\sum_{n=0}^{\infty} (-1)^{n+1} z^{2n+1} + \frac{1}{z}.$$

For the other domain, you should get

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z^{2n+1}}.$$

Hint 2: Observe that $(-1)^{n-1} = (-1)^{n-1}(-1)^2 = (-1)^{n+1}$.

Solution:

The function f(z) has isolated singularities at z = 0 and $z = \pm i$.

Hence there is a Laurent series representation for the domain 0 < |z| < 1 and also one for the domain $1 < |z| < \infty$, which is exterior to the circle |z| = 1.

To find each of these Laurent series, we recall the Maclaurin series representation

$$\frac{1}{1-z}=\sum_{n=0}^{\infty}z^n,\quad |z|<1.$$

For the domain 0 < |z| < 1, we have

$$f(z) = \frac{1}{z} \frac{1}{1+z^2} = \frac{1}{z} \sum_{n=0}^{\infty} (-z^2)^n$$
$$= \sum_{n=0}^{\infty} (-1)^n z^{2n-1}$$
$$= \frac{1}{z} + \sum_{n=1}^{\infty} (-1)^n z^{2n-1}$$
$$= \sum_{n=0}^{\infty} (-1)^{n+1} z^{2n+1} + \frac{1}{z}.$$

On the other hand, when $1 < |z| < \infty$,

$$f(z) = \frac{1}{z^3} \frac{1}{1 + \frac{1}{z^2}} = \frac{1}{z^3} \sum_{n=0}^{\infty} \left(-\frac{1}{z^2} \right)^n$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+3}}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z^{2n+1}}$$

In this last part we use the fact that $(-1)^{n-1} = (-1)^{n-1}(-1)^2 = (-1)^{n+1}$.