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Semester 1, 2025, Week 11

(1) Use the definition of limits of sequences, given in Lecture 30 page 3, to verify that the

limit of the sequence

zn = −2 + i
(−1)n

n2
(n = 1, 2, . . .).

converges to −2.

Solution: Notice that ∣∣zn − (−2)
∣∣ =

1

n2
.

Thus, for each ε > 0,

∣∣zn − (−2)
∣∣ < ε whenever n > n0,

where n0 is any positive integer such that n0 ≥
1√
ε

.



(2) Find the Maclaurin series expansion of the function

f(z) =
z

z4 + 9

and calculate the radius of convergence.

Solution: We want the Maclaurin series for

f(z) =
z

z4 + 9
=

z

9
· 1

1− (−z4/9)

Replace just z by (−z4)/9 in

1

1− z
=
∞∑
n=0

zn, |z| < 1.

as well as its condition of validity, to get

1

1 + (−z4/9)
=
∞∑
n=0

(
−z4

9

)n

=
∞∑
n=0

(−1)n

9n︸ ︷︷ ︸
Final result

z4n =
∞∑
n=0

(−1)n

32n
z4n

︸ ︷︷ ︸
Extra simplification

, |z| <
√

3.

Then if we multiply through this last equation by z/9 = z/32, we have the desired

expansion:

f(z) =
z

32

∞∑
n=0

(−1)n

32n
z4n =

∞∑
n=0

(−1)n

32n+2
z4n+1, |z| <

√
3.



(3) Find the Taylor series of the function

f(z) =
1

1− z

about the point i and provide the radius of convergence.

Solution: The function
1

1− z
has a singularity at z = 1. So the Taylor series about

z = i is valid when
∣∣z − i

∣∣ < √2.

To find the series, we start by writing

1

1− z
=

1

(1− i)− (z − i)
=

1

1− i
· 1

1− (z − i)/(1− i)
.

Now we can replace z by (z − i)/(1− i) in the known expression

1

1− z
=
∞∑
n=0

zn (
∣∣z∣∣ < 1)

and then multiply through by
1

1− i
. Therefore, the Taylor series is

1

1− z
=
∞∑
n=0

(z − i)n

(1− i)n+1
(
∣∣z − i

∣∣ < √2).



(4) Show that when 0 < |z| < 4,

1

4z − z2
=

1

4z
+
∞∑
n=0

zn

4n+2
.

Solution: Suppose that 0 < |z| < 4. Then 0 < |z/4| < 1, and we can use the know

expansion
1

1− z
=
∞∑
n=0

zn, |z| < 1.

That is, when 0 < |z| < 4

1

4z − z2
=

1

4z
· 1

1− z

4

=
1

4z

∞∑
n=0

(z
4

)n
=
∞∑
n=0

zn−1

4n+1

=
1

4z
+
∞∑
n=1

zn−1

4n+1

=
1

4z
+
∞∑
n=0

zn

4n+2



(5) Write the two Laurent series in powers of z that represent the function

f(z) =
1

z(1 + z2)

in certain domains, and specify those domains.

Hint 1: For one domain you should get

∞∑
n=0

(−1)n+1z2n+1 +
1

z
.

For the other domain, you should get

∞∑
n=1

(−1)n+1

z2n+1
.

Hint 2: Observe that (−1)n−1 = (−1)n−1(−1)2 = (−1)n+1.

Solution:

The function f(z) has isolated singularities at z = 0 and z = ±i.

Hence there is a Laurent series representation for the domain 0 < |z| < 1 and also one

for the domain 1 < |z| <∞, which is exterior to the circle |z| = 1.

To find each of these Laurent series, we recall the Maclaurin series representation

1

1− z
=
∞∑
n=0

zn, |z| < 1.

For the domain 0 < |z| < 1, we have

f(z) =
1

z

1

1 + z2
=

1

z

∞∑
n=0

(
−z2

)n
=

∞∑
n=0

(−1)nz2n−1

=
1

z
+
∞∑
n=1

(−1)nz2n−1

=
∞∑
n=0

(−1)n+1z2n+1 +
1

z
.



On the other hand, when 1 < |z| <∞,

f(z) =
1

z3

1

1 + 1
z2

=
1

z3

∞∑
n=0

(
− 1

z2

)n

=
∞∑
n=0

(−1)n

z2n+3

=
∞∑
n=1

(−1)n+1

z2n+1

In this last part we use the fact that (−1)n−1 = (−1)n−1(−1)2 = (−1)n+1.


