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(1) Use Cauchy’s residue theorem (Lecture 33) to evaluate the integral of each of these

functions around the circle |z| = 3 in the positive sense:

(a)
exp(−z)

z2
; (b) z2 exp

(
1

z

)
; (c)

z + 1

z2 − 2z
.

(2) In each case, find the Laurent series of the function at its isolated singular point. De-

termine whether that point is a pole (determine its order), a removable singular point

or an essential singularity. Finally, determine the corresponding residue.

(a) z exp

(
1

z

)
; (b)

z2

1 + z
; (c)

cos z

z
; (d)

1− cosh z

z3
; (e)

1

(2− z)3
.

Suggestion 1: Use the known series

∞∑
n=0

zn

n!
,

∞∑
n=0

(−1)n
z2n

(2n)!
,

∞∑
n=0

z2n

(2n)!
, (|z| <∞).

Suggestion 2: For part (b) notice that z2 = (z + 1)2 − 2z − 1 = (z + 1)2 − 2(z + 1) + 1

(3) Find the value of the integral ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz,

taken counterclockwise around the circle (a) |z − 2| = 2; (b) |z| = 4.

Ans. (a) πi; (b) 6πi.


