SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401 Problem Worksheet Semester 1, 2025, Week 12

(1) Use Cauchy's residue theorem (Lecture 33) to evaluate the integral of each of these functions around the circle |z| = 3 in the positive sense:

(a)
$$\frac{\exp(-z)}{z^2}$$
; (b) $z^2 \exp\left(\frac{1}{z}\right)$; (c) $\frac{z+1}{z^2-2z}$.

(2) In each case, find the Laurent series of the function at its isolated singular point. Determine whether that point is a pole (determine its order), a removable singular point or an essential singularity. Finally, determine the corresponding residue.

(a)
$$z \exp\left(\frac{1}{z}\right);$$
 (b) $\frac{z^2}{1+z};$ (c) $\frac{\cos z}{z};$ (d) $\frac{1-\cosh z}{z^3};$ (e) $\frac{1}{(2-z)^3}$

Suggestion 1: Use the known series

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}, \qquad \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \qquad \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \qquad (|z| < \infty)$$

Suggestion 2: For part (b) notice that $z^2 = (z+1)^2 - 2z - 1 = (z+1)^2 - 2(z+1) + 1$

(3) Find the value of the integral

$$\int_C \frac{3z^3 + 2}{(z-1)(z^2 + 9)} dz,$$

taken counterclockwise around the circle (a) |z - 2| = 2; (b) |z| = 4. Ans. (a) πi ; (b) $6\pi i$.