SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401
Problem Worksheet
Semester 1, 2025, Week 13

(1) Find the Laurent series expansion of

F) = (1= s ()

about the point z = 0, classify the singularity, and find the residue at that point.

Solution: The function has a singularity at 0. Its Laurent series is:
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Therefore, the function has an essential singularity at 0 and
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(2) Use residues to evaluate the improper integral:
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Ans. /4.

Solution: First notice that the function 1/(z? + 1)? is even. Then
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Figure 1: Improper integral.

Now we need to calculate the integral
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To do this we will calculate the integral of the complex function
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around the simple closed contour consisting of:

(i) the segment of the real axis from z = —R to z = R, and

(ii) the top half of the circle |z| = R, described counterclockwise and denoted by Cg

with R > 1, see Figure ?77.

Since the singularity zo = i lies in the interior of Cg (R > 1), we have that
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Figure 2: Simple closed contour.

Since ) o(2) )
(212 (z—i)2 where  ¢(z) = (z +4)2’
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we can find that B = ¢V (4) = yr (Why?). Thus
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Observe that if z € Cg,
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(3) Use residues to find the Cauchy principal value of the integral
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Solution: Here we need to show that
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To do this we introduce the function

1@ = e

and the simple closed contour shown below.

Im

Re

Figure 3: Simple closed contour.

Notice that the singularities of f(z) are at ¢, zo = —1 + ¢ and their conjugates —i,

—1 — ¢ in the lower half plane. Also, if R > V2, we see that
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Since
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converges to 0 as R goes to infinity, then
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which is the required result.



(4) Determine the number of zeros, counting multiplicities, of the polynomials

(a)
(b)
(c)

24 4 323 + 6;
24— 2234922+ 2 — 1;

P43 42241

inside the circle |z| = 2.

Ans. (a) 3; (b) 2; (c) 5.

Solution: Let C' denote the circle |z| = 2.

(a)

The polynomial z* 4 323 + 6 can be written as the sum of the polynomials
f(2) =32 and g(z) =2*+6.

On C,
|f(z) =3|z> =24 and |g(2)] = |z* + 6] < |z]* +6 = 22.

Since |f(2)| > |g(z)| on C and f(z) has 3 zeros, counting multiplicities, inside C it

follows that the original polynomial has 3 zeros, counting multiplicities, inside C'.

The polynomial z* — 222 +922 + z — 1 can be written as the sum of the polynomials
f(2) =92 and g(z)=2"—2+2-1.
On C,
If(2) =9]2]* =36 and |g(2)] = |2* —22° — 1| < |z|* +2]2* + |z| + 1 = 35.

Since |f(z)| > |g(z)| on C and f(z) has 2 zeros, counting multiplicities, inside C, it

follows that the original polynomial has 2 zeros, counting multiplicities, inside C'.

The polynomial z° + 323 + 22 4 1 can be written as the sum of the polynomials
f(z) =2 and g(z)=32"+2*+1.
On C,
1f(2) = |2 =32 and |g(2)| = 32>+ 2% + 1| < 3|z|> + |2)* + 1 = 29.

Since |f(2)| > |g(2)| on C and f(z) has 5 zeros, counting multiplicities, inside C, it

follows that the original polynomial has 5 zeros, counting multiplicities, inside C'.



