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(1) Are the following functions conformal? To answer this, analyse their domains and draw

some sketches to map specific regions.

(a) f(z) = ez

(b) f(z) = z2

(c) f(z) = z +
1

z

Solution. (a) The function f(z) = ez is conformal throughout the entire z plane since

the function is entire and (ez)′ = ez 6= 0 for each z. For details about this mapping see

Section 14 from Churchill’s book.

(b) We know that the function f(z) = z2 maps a quarter plane to a half plane, and

therefore doubles the angle between the coordinate axes at the origin (see Figures ??

and ??).

Figure 1: A quarter plane. Figure 2: Image under the map f(z) = z2.



The function f(z) = z2 is conformal on C except at the origin, since f is entire, and 0 is

the only critical point of f .

Note that, due to conformality, the map preserves angles everywhere else.

Although f(z) = z2 is not conformal at z0 = 0, we can find a region that will be mapped

conformally. For example, consider the right half-plane {Re (z) > 0}. This region is

mapped conformally by w = z2 onto the slit plane C \ (−∞, 0], as illustrated in Figures

?? and ??.

Figure 3: {Re (z) > 0}

Figure 4: Image under the map f(z) = z2.

(c) Consider now the Joukowsky map

w = z +
1

z
(1)

Since
d

dz
w = 1− 1

z2
= 0 if and only if z = ±1,

the Joukowsky map is conformal except at the critical points z = ±1 as well as the

singularity z = 0, where it is not defined.



If z = eiθ lies on the unit circle, then

w = eiθ + e−iθ = 2 cos θ,

lies on the real axis, with −2 ≤ w ≤ 2. Thus, the Joukowsky map squashes the unit

circle down to the real line segment [−2, 2]. The images of points outside the unit circle

fill the rest of the w plane, as do the images of the (nonzero) points inside the unit circle.

Indeed, if we solve (??) for z, we have

z =
1

2

(
w ±
√
w2 − 4

)
.

We see that every w except ±2 comes from two different points z; for w not on the

critical line segment [−2, 2], one point (with the minus sign) lies inside and one (with

the plus sign) lies outside the unit circle, whereas if −2 < w < 2, both points lie on the

unit circle and a common vertical line.

Therefore, the Joukowski map

f(z) = z +
1

z

defines a one-to-one conformal mapping from the exterior of the unit circle {|z| > 1}
onto the exterior of the line segment C \ [−2, 2].

Figure 5: Concentric circles |z| = r ≥ 1. Figure 6: Image under the Joukowski map.



(2) Show that u(x, y) is harmonic in some domain and find a harmonic conjugate when

(a) u(x, y) = 2x(1− y)

(b) u(x, y) = 2x− x3 + 3xy2

(c) u(x, y) = sinh x sin y

(d) u(x, y) =
x

x2 + y2

Solutions:

(a) When u(x, y) = 2x(1− y), we have that

ux = 2− 2y, uy = −2x

and

uxx = 0, uyy = 0.

Thus

uxx + uyy = 0.

To find a harmonic conjugate v(x, y), we start with ux(x, y) = 2 − 2y. Now, using

Cauchy-Riemann equations

ux = vy =⇒ vy = 2− 2y =⇒ v(x, y) = 2y − y2 + g(x).

Then

uy = −vx =⇒ −2x = −g′(x) =⇒ g′(x) = 2x =⇒ g(x) = x2 + c (c ∈ R).

Consequently

v(x, y) = 2y − y2 + (x2 + c) = x2 − y2 + 2y + c (c ∈ R).



(b) When u(x, y) = 2x− x3 + 3xy2, we have that

ux = 2− 3x2 + 3y2, uy = 6xy

and

uxx = −6x, uyy = 6x.

Thus uxx + uyy = 0.

To find a harmonic conjugate v(x, y), we start with ux(x, y) = 2− 3x2 + 3y2. Now

ux = vy =⇒ vy = 2− 3x2 + 3y2 =⇒ v(x, y) = 2y − 3x2y + y3 + g(x).

Then

uy = −vx =⇒ 6xy = 6xy − g′(x) =⇒ g′(x) = 0 =⇒ g(x) = c (c ∈ R).

Consequently

v(x, y) = 2y − 3x2y + y3 + c (c ∈ R).

(c) When u(x, y) = sinh x sin y, we have that

ux = coshx sin y, uy = sinhx cos y

and

uxx = sinhx sin y, uyy = − sinhx sin y.

Thus uxx + uyy = 0.

To find a harmonic conjugate v(x, y), we start with ux(x, y) = cosh x sin y. Now

ux = vy =⇒ vy = coshx sin y =⇒ v(x, y) = − coshx cos y + g(x).

Then

uy = −vx =⇒ sinhx cos y = sinhx cos y−g′(x) =⇒ g′(x) = 0 =⇒ g(x) = c (c ∈ R).

Consequently

v(x, y) = − coshx cos y + c (c ∈ R).



(d) Finally for u(x, y) =
x

x2 + y2
, we have that

ux =
y2 − x2

(x2 + y2)2
, uy =

−2xy

(x2 + y2)2

and

uxx = 2x
x2 − 3y2

(x2 + y2)3
, uyy = −2x

x2 − 3y2

(x2 + y2)3
.

Thus uxx + uyy = 0.

To find a harmonic conjugate v(x, y), we start with ux(x, y) =
y2 − x2

(x2 + y2)2
. Now

ux = vy =⇒ vy =
y2 − x2

(x2 + y2)2
=⇒ v(x, y) = − y

x2 + y2
+ g(x).

Then

uy = −vx =⇒ −2xy

(x2 + y2)2
= − 2xy

(x2 + y2)2
− g′(x)

=⇒ g′(x) = 0 =⇒ g(x) = c (c ∈ R).

Consequently

v(x, y) = − y

x2 + y2
+ c (c ∈ R).



(3) Let f(z) be an analytic function on a domain Ω that does not include the origin. Using

polar coordinates in Ω, f has the form

f(z) = u(r, θ) + iv(r, θ).

(a) Using the chain rule, show that all partial derivatives of u and v of first and second

order with respect to r and/or θ are continuous (indeed, all partial derivatives of

any order are).

(b) Using the Cauchy-Riemann equations in polar coordinates, show that u satisfies

r2urr + rur + uθθ = 0.

This is the polar form of Laplace’s equation, after having multiplied through by r2:

the Laplacian ∆ is given in spherical coordinates by 1
r2

(r2 ∂2

∂r2
+ r ∂

∂r
+ ∂2

∂θ2
).

(c) Show that v satisfies

r2vrr + rvr + vθθ = 0.

(d) Give a procedure which finds the harmonic conjugate of a given harmonic function u

given in polar coordinates (don’t transform to cartesian coordinates: the harmonic

conjugate v should be expressed as v(r, θ)).

(e) Verify directly that the function u(r, θ) = ln(r2) is harmonic on the domain {z | r >
0, 0 < arg z < 2π}, and use your procedure from part (d) to calculate a harmonic

conjugate.

Solution: (a) Since f(z) is analytic on Ω, f(z) is also differentiable on Ω. Then the

first-order partial derivatives of u and v with respect to x and y exist everywhere in

some neighbourhood of a given nonzero point z0 ∈ Ω and are continuous at z0.

Now the chain rule for differentiating real-valued functions of two real variables can be

used to write polar form of u(r, θ) and v(r, θ) in terms of the ones with respect to x and

y.

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
and

∂u

∂θ
=
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ
.



Thus

ur = ux cos θ + uy sin θ

and

uθ = −ux r sin θ + uy r cos θ.

This means that ur and uθ are continuous.

Now, in a similar way, using the following expressions

∂v

∂r
=
∂v

∂x

∂x

∂r
+
∂v

∂y

∂y

∂r
and

∂v

∂θ
=
∂v

∂x

∂x

∂θ
+
∂v

∂y

∂y

∂θ

we obtain

vr = vx cos θ + vy sin θ

and

vθ = −vx r sin θ + vy r cos θ.

Hence, vr and vθ are also continuous.

(b) The Cauchy-Riemann equations in polar coordinates are

rur = vθ and uθ = −rvr.

Then

rur = vθ =⇒ rurr + ur = vθr =⇒ r2urr + rur = rvθr

and

uθ = −rvr =⇒ uθθ = −rvrθ.

Adding these two equations we obtain

r2urr + rur + uθθ = rvθr − rvrθ.

Now, since vrθ = vθr, we have

r2urr + rur + uθθ = 0.



(c) This can be shown in a similar way to part (b).

(d) We can use Cauchy-Riemann equations in polar coordinates

rur = vθ and uθ = −rvr.

(e) Here we can use part (b). If u(r, θ) = ln(r2) = 2 ln r, with r > 0, then

r2urr + rur + uθθ = r2
(
− 2

r2

)
+ r

(
2

r

)
+ 0 = 0

This means that the function u(r, θ) = ln(r2) is harmonic on the domain {z | r > 0, 0 <

arg z < 2π}.

Now, from Cauchy-Riemann equation rur = vθ and the derivative ur =
2

r
, we obtain

vθ = 2. Then

v(r, θ) = 2θ + g(r)

where g(r) is an arbitrary differentiable function of r. Using the other Cauchy-Riemann

equation uθ = −rvr we get 0 = −rg′(r). In other words, g′(r) = 0 and so g(r) = c, with

c ∈ R. Therefore v(r, θ) = 2θ + c is a harmonic conjugate of u(r, θ) = ln(r2).


