SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401
Problem Worksheet
Semester 1, 2025, Week 9

(1) Are the following functions conformal? To answer this, analyse their domains and draw

some sketches to map specific regions.

(c) f(z)=Z+;

Solution. (a) The function f(z) = e* is conformal throughout the entire z plane since
the function is entire and (e*)’ = e* # 0 for each z. For details about this mapping see
Section 14 from Churchill’s book.

(b) We know that the function f(z) = 2% maps a quarter plane to a half plane, and
therefore doubles the angle between the coordinate axes at the origin (see Figures ??
and ?77).
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Figure 1: A quarter plane. Figure 2: Image under the map f(z) = 2*.



The function f(z) = 2% is conformal on C except at the origin, since f is entire, and 0 is

the only critical point of f.
Note that, due to conformality, the map preserves angles everywhere else.

Although f(z) = 22 is not conformal at zy = 0, we can find a region that will be mapped
conformally. For example, consider the right half-plane {Re (z) > 0}. This region is
mapped conformally by w = z? onto the slit plane C\ (—oo, 0], as illustrated in Figures
7?7 and ?7.
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Figure 3: {Re (z) > 0}

Figure 4: Image under the map f(z) = 22

(c) Consider now the Joukowsky map

1
= - 1
w=z+ . (1)
Since
d 1 . .
—w=1——=0 ifand only if z==+1,
dz 22

the Joukowsky map is conformal except at the critical points z = £1 as well as the

singularity z = 0, where it is not defined.



If z = " lies on the unit circle, then
w=e?+e = 2cos,

lies on the real axis, with —2 < w < 2. Thus, the Joukowsky map squashes the unit
circle down to the real line segment [—2,2]. The images of points outside the unit circle
fill the rest of the w plane, as do the images of the (nonzero) points inside the unit circle.

Indeed, if we solve (??) for z, we have
1
=3 (wi\/w2—4).

We see that every w except +2 comes from two different points z; for w not on the
critical line segment [—2,2], one point (with the minus sign) lies inside and one (with
the plus sign) lies outside the unit circle, whereas if —2 < w < 2, both points lie on the

unit circle and a common vertical line.

Therefore, the Joukowski map
f&) =zt
2)=2z4—
z

defines a one-to-one conformal mapping from the exterior of the unit circle {|z| > 1}

onto the exterior of the line segment C \ [-2,2].
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Figure 5: Concentric circles |z| =r > 1.  Figure 6: Image under the Joukowski map.
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(2) Show that u(z,y) is harmonic in some domain and find a harmonic conjugate when

(a) u(z,y) =22(1 -y
(b) u(x,y) = 2z — 23 + 3zy?
(¢) u(x,y) =sinhxsiny
x
(d) U(.T,y) = 72 +y2
Solutions:

(a) When u(z,y) = 2z(1 — y), we have that

Uy = 2 — 2y, Uy = —2x

and
Uy = 0, Uyy =0
Thus
Ugg + Uyy = 0.
To find a harmonic conjugate v(z,y), we start with u,(x,y) = 2 — 2y. Now, using

Cauchy-Riemann equations
Uy = v, = v, =22y = v(z,y) =2y — v+ g(2).
Then
u, = —v, = —2r=—g'(z) = ¢(z) =20 = g(r)=2"+c (cER).
Consequently

v(r,y) =2y — v+ (@* +c)=2"—y* +2y+c (ceR).



(b) When u(z,y) = 2z — 2 4+ 3zy?, we have that
Uy = 2 — 32 + 3y, uy = 6y

and

Uypr = —6, Uyy = 6.

Thus Uz, + Uy, = 0.

To find a harmonic conjugate v(z,y), we start with u,(z,y) = 2 — 3z* + 3y>. Now
U, = v, = v, =2— 32"+ 3y* = v(z,y) =2y — 327y +y* + g(x).
Then
Uy = —v, = by =062y — ¢ (r) = ¢(2)=0 = g(xr)=c (c€R).

Consequently
v(z,y) =2y —32°y +y* +c (ceR).

(c) When u(z,y) = sinha siny, we have that
u, = cosh x siny, u, = sinhx cosy

and

Uz, = Sinh z siny, Uy, = —sinhxsiny.
Thus Uz, + Uy, = 0.

To find a harmonic conjugate v(x,y), we start with u,(z,y) = coshzsiny. Now
u, =v, => v, =coshzsiny = v(z,y) = —coshzcosy + g(x).
Then
uy, = —v, = sinhzcosy =sinhzcosy—¢'(z) = ¢'(x) =0 = g(x) =c (c€R).

Consequently
v(z,y) = —coshzcosy +c¢ (c€R).



(d) Finally for u(z,y) = ¥ we have that

22+ y?’
y? — a? —2zy
Uy = 75 55> Uy = 755
(22 + y?)? (2?4 y2)?
and
U = 2xﬂ U = _Qxﬂ
vz (@2 + g2)% vy (22 + 42)%

Thus Uz, + Uy, = 0.

2 _ 2

To find a harmonic conjugate v(z,y), we start with u,(z,y) = % Now
T Y
y? — o
Uy = Vy == Uy = m — U(.T,y) = _(L’Q—i—yQ +g($)
Then
B —2xy 2y ,
WU = e T @y Y
— ¢ () =0 = g(z)=c (c€R).

Consequently

+c (ceR).

U(l‘,y) = _l’2+y2



(3) Let f(z) be an analytic function on a domain €2 that does not include the origin. Using

polar coordinates in €2, f has the form

(a)

(b)

f(z) =u(r,0) + iv(r,0).

Using the chain rule, show that all partial derivatives of u and v of first and second
order with respect to r and/or 6 are continuous (indeed, all partial derivatives of

any order are).

Using the Cauchy-Riemann equations in polar coordinates, show that u satisfies
720U + T, + Uy = 0.

This is the polar form of Laplace’s equation, after having multiplied through by r:
. . . . . . 2 ‘ 2
the Laplacian A is given in spherical coordinates by 7%2(7’2% + r% + %).

Show that v satisfies

2
Ve + 10, + vgg = 0.

Give a procedure which finds the harmonic conjugate of a given harmonic function u
given in polar coordinates (don’t transform to cartesian coordinates: the harmonic

conjugate v should be expressed as v(r,6)).

Verify directly that the function u(r, §) = In(r?) is harmonic on the domain {z|r >
0,0 < argz < 27}, and use your procedure from part (d) to calculate a harmonic

conjugate.

Solution: (a) Since f(z) is analytic on Q, f(z) is also differentiable on Q. Then the

first-order partial derivatives of u and v with respect to z and y exist everywhere in

some neighbourhood of a given nonzero point 2, € {2 and are continuous at 2.

Now the chain rule for differentiating real-valued functions of two real variables can be

used to write polar form of u(r, #) and v(r,#) in terms of the ones with respect to = and

Y.

Ou Ou dxr  Ou Jy Ou Ou dxr Ou Jy
= — 4+ — == and — — —=

or oz or oy or 20 0z 00 0y 00



Thus

Uy = Uy cOs O + u, sin 6

and

Up = —Uy T sinb + u, rcosb.

This means that u, and ug are continuous.

Now, in a similar way, using the following expressions

Gv_avé?_x 8@@

Ov _ Ov ox v 81}_02}@ 81}@
or Oz Or Oy Or

and —

90 0z 00 oy o0

we obtain

Uy = vy cos b + v, sin 6

and

Vg = —vy rsinb + v, rcosb.

Hence, v, and vy are also continuous.

(b) The Cauchy-Riemann equations in polar coordinates are
ru, = vy and ug = —ru,.

Then

2
TUp = V9 = TUpp + Up = Vgr —> T Upp + TU = TVyy

and

Up = — TV, — Ugg = —TVUpp.

Adding these two equations we obtain

2
T Uy + TU, + Ugp = TV — TVUpg.

Now, since v,9 = vg,, we have

2
r“Upyr + 17U, + Ugg = 0.



(c) This can be shown in a similar way to part (b).

(d) We can use Cauchy-Riemann equations in polar coordinates

ru, = vg and ug = —1ro,.

(e) Here we can use part (b). If u(r,0) = In(r?) = 2Inr, with r > 0, then

9 9 2 2
Uy + U Fugg=1" | = | +7| -] +0=0
r r

This means that the function u(r,#) = In(r?) is harmonic on the domain {z|r > 0,0 <

arg z < 2m}.

2
Now, from Cauchy-Riemann equation ru, = vy and the derivative u, = —, we obtain
r
vg = 2. Then
v(r,0) =20 + g(r)

where g(r) is an arbitrary differentiable function of r. Using the other Cauchy-Riemann
equation ug = —rv, we get 0 = —rg’(r). In other words, ¢’(r) = 0 and so g(r) = ¢, with

¢ € R. Therefore v(r, ) = 20 + ¢ is a harmonic conjugate of u(r, ) = In(r?).



