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1.7 Cross-sections of a Surface

A cross-section is the intersection of a surface with a vertical plane such as y = C,
see also Stewart Section 12.6 (Section 13.6).

Example:

The height z of a vibrating guitar string can be expressed as a function of horizontal
distance z, and time ¢

} z = f(z,t) = Asin(rz) cos(2nt) i where O<z<l

—

i

The snapshots where t is constant are cross-sections of the ‘surface’.
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Varying time we get

4= z = Asin(rz)

) 3 —;— ; 3= %\/QA sin(nx)
fi= % i z=0

b= g : 3= —%\/_Q-A sin(nz)
= % 3 z = —Asin(rz).

—

These represent sine curves, with amplitudes between 0 and A.

We can also consider the cross-sections in z. For instance z = % (at the top of the

sine wave), then z = A cos(27t) which equals the amplitude of the sine wave.
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Vibration of a guitar string: » — sin (mz) cos(2nt)

Matlab can be used to make a movie of the 2-dimensional
sections at different ¢ values in sequence. The sequence o
vector and played as a movie using the following code:

surface by plotting cross-
f plots can be stored in a

x=(0:0.25:1);
for j=1:100
E=q/25:

z=sin(pi*x)*cos (2*pi*t) ;
plot(x,z);axis ([0, 1,-1,1]);
M(j)=getframe;

end

Note: ezplot cannot be used to do this because Matlah

gets confused about which
of ¢, z is a variable and which is a number.
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Example: Sketch the cross-sections of the surface V' = trr?h (volume of a cone).

dimensional picture from Matlab.

Here is the 3-

)= w\ﬂamr

Volume of a cone: V(r,h

=2}
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Volume, V

o @

0.5
2 0 Radius, 7
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Height, h
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Example: The cross-sections of a saddle z = z* — y? are parabolas. For y = yp
they point up: z = 2® — (yo)*; and for z = zy they point down: z = —y® + 22,

The surface is tricky to draw, unless you are an equestrian.
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Here is the Matlab plot of the saddle z = 22 — y* and its contours.

A saddle: z = 22 — ¢
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Example: Use cross-sections to sketch the graph of z = flz,y) = z°.

1.7.1 Main points
e You should be able to construct cross-sections of multivariate functions.

e (ross sections are 2-dimensional graphs.

e Animation of cross-sections is another way to visualise multivariate functions.
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2 Partial Derivatives and Tangent Planes

We will need to consider derivatives of functions of more than one variable. To
do this, we first check how the familiar concepts of limits and continuity extend
to functions of more than one variable. This material is covered in Section 14.2
(Section 15.2) of Stewart.

2.1 Limits and Continuity

2.1.1 mewqmé of the 1-variable case

¢!
Let f: D — R be a function with domain D an open subset of R. For a € D we
say that the limit lim f{z) exists if and only if, (i) the limit from the left exists, (ii)

rT—a .
the limit from the right exists, and (ii1) these two limits coincide, i.e.,
T -
lim f(z) = lim f(z).
T—ra= z—at

Furthermore, if the limit exists and is equal the actual value of f at a, i.e., if

lim f(z) = lim f(z) = f(a),

T—ra~ z—at

we say that f is continuous at z = a.

If f is continuous on all of @ we say that f is a continuous function on D.
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We can also consider the limit for points on the boundary of the domain D of a
function. For example, if f : (0,2) — R is defined by f(z) = 1/z, then

1
li () = =
Jim f (@) =35
but
li
HWH%.T..N_‘AHV - .._ = »N ﬂWm
does not exist. o /

Another instructive example is f : R\{0} — R given by f(z) = #*. The domain is
now the punctured real line, i.e., D = (—00,0) U (0, 00), but

lim f(z)= lim f(z)=0.

z—0— z—0t

In this situation we also say that limg o f(2) exists and in fact one can fix the hole
by defining f(0) = 0, to extend f to a continuous function on all of R.

Important remark: Never, ever compute lim, ., f(x) by blindly substituting
z =ain f. For example, if

22 forx£3
a forz=3,

then lim,_;3 f(x) exists and is given by 9 which is not equal to 7: the function f is
not continuous at = 3.

0D
)

gﬁx As a second example, if f: D — R with D = R\{1} is given by

- Jo ,\\Yﬁk

lH..lu

M@ - ﬂ.\ @I 1.

then lim, .1 f(z) =(2.) Those (and there will be some) who write “This limit gives

——

0/0 which does not exist” should hang their heads in shame.
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2.1.2 Multivariable limits

When f is a function of more than one variable, the situation is more interesting.

There are more than two ways to approach a given point of interest. Consider the

function ,
e m i
flz,y) =

22 P
with domain given by R?\{(0,0)}.

= ]

To see the graph of f in Matlab, type /\

ezsurf (* (x"2/(x"2+y"2) )

(i) Approaching the origin &osm y =0

Nm.\.ﬁ .waw%» — dmﬁ\%%\ Mﬁﬂﬁwu.ﬂ. %ww%

(e 164
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(ii) Approaching the origin along x = 0:

e

Umvom Lim (. 1) exdst?
FSIAPSHA )

In general, for the limit : %ﬁ 5 f(z,y) to exist, it is necessary that every path in
T, —r Oy
D approaching (a,b) (the point {a, b) itself may or may not be in D) gives the same

limiting value. This gives us the following method for finding if a limit does not
exist.

Important remark: The above notation is somewhat deficient and perhaps one
should write

lim  f(z9)

(zy)—p(a.b)
to indicate that only paths in D terminating in (a,b) (which itself may or may not be
in D) are considered. For example, if f(z,y) = r? +y? with = {(z,y): 22+9* <
1} then Hmy, 4,0 f (2, y) exists and is 1. However, if

p?+qy? for D={{z,y): e*+y* <1}
0 for D= {(z,y): 2 +y*>1}

_ .._.\.‘., .m.... . -

flz,y) =

/

then lim, (1,0 f (2, y) does not exist. A /A
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oz l.@w//.
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megﬁﬁmbmdb%w/ﬁoovwmum%bi%wvmmjﬁh gﬁx HS
G!“HH“
Show that lim, ,\—0,0) f(2,y) does not exist. ————

Ty
Hm + w_.w

Example: With the same D as above but now f(z,y) = , show that

T yyo0 f (2, ) does not exist.
Along X=0O:
(v, %u,}pm_o ,0)
h_Q W\Q

< T@_am%% < =0.
Ll <=4 - =

/ X" N
Vo) <X n 2= 0
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Important remark: There are infinitely many paths terminating in a given point,
say (a,b), in R?, raising the question if one can ever prove that lim y)—s(a) (2 y)
does exist. The good news is that there are methods that can deal with infinitely
many paths simultaneously. The bad news is that these methods (typically ed
proofs) are not part of this course. See Stewart Sec 14.2 (Sec 15.2), Example 4 for

a rigorous e-6 proof that
lim f(z,y) =0,

(zy)—(0,0)
where . "
32y
(= +.4*)
and D = RA\{(0,0)}. ¥
Example: Give a sgngighygus proof that the above limit is indeed correct by
writing z = rcos§ and y = rsin#. -
o b fo In

e Yixq) " _ 5
Copsidet «\M\@%& ™ Kv ir:
1l N = N erRE s &
() e
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2.1. LIMITS AND CONTINUITY

2.1.3 Multivariable continuity

Definition Given a function f : D — H%mu where D is an open subset of R2. Let €& ®
(a,b) € D. Then f(z,%) is continuous at (a,b) if -
lim z,9) = f(a,b),
ol Aéi y) = f( ;

Le., the limit (z,y) — (a,b) of f(z,y) exists and is equal to f(a, b).

If a function is continuous on all of D we say simply that it is continuous on .

Most of the functions we will consider are continuous. For example, polynomials in
r and y are continuous on R?. As a rule of thumb, if a function with domain D j
defined by a single expression it will be continuous on D).

M —
Example: Returning to the first example on page 71, where f(z,y) = R

H H.M -+ .@m — -
L= RM\{(0, 0)}, is f(z,¥) a continuous function? e g%

Profolens ?&% arife. ot \Qw o).
bue (0,0) s ercluded rom D)
So m S COA{ oty d v
Example: If we edit the above example by instead defining f on all of R? by taking
LS (0,0) =0, fhen is f a continuous function? r\.‘NV
For { so be comcth. a+ O & fas
v he cens-. as (0,0 €4 wucledestly,
N% _m?,@uﬂm,\m&\.TQQ |
(gy>(0.0y I / e
2.1.4 Main points gﬁ ﬁﬂ\\\w&\ﬁ @Y F&\ MM\»& \&,’MS

e You should be able to show when a limit does not exist. mﬁw rmW q mr\« \

2

e You should understand continuity of multivariate functions. m.& ﬁ_wi“—’

%
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2.2 Partial Derivatives

This material is covered in Stewart, Section 14.3 (Section 15.3).

2.2.1 Slope in the z-direction

Consider the surface z = f(z,y) = 1 — 2? — y? and the point P = (1,—1,—1) on
the surface. Use the “y-is-constant” cross-section through P to find the slope in the

z-direction at P.

he surface z = f(z,y) =1~ z? — 2
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The slope in the z-direction, with y held fixed, is called the partial derivative of f

with respect to z at the point (a, b)
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2.2.2 Slope in the y-direction

Use the “z-is-constant” cross-section to find the slope at P = (1,—1,-1) in the y
direction, i.e., where z = 1.

T O

Emm——

Similarly, the slope in the y-direction, with z held fixed, is called the partial deriva-
tive of f with respect to Y at the point (a, b)

Important remark: Normal rules of differentiation apply, we simply think of the
variables being held fixed as constants when doing the differentiation.
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m_ @.
Example: Find the partial derivatives w% and WM of flz,y) == mE@.T@OOmH.

Example: Given flz,y) =2y’ + 22, find f,(1,2) and £:01,2).
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2.2.3 Partial derivatives for f(z,y, z)

Example: The volume of a hox Viz,y,2) = zy2.
e —— >
If & changes by a small amount, say Az, denote the corresponding change in V by
AV. We can easily visualise that AV — YZINE,
_@Q&?&

\.Uz%@

. \m ‘e Velume

AV=\ -V

/vy Q@«W& \Au f@gﬁgm

V= (25 3)Y2 =\ exvyz

Therefore,
AV

oV
Letting Az — 0 we have 3, Y
&€

For partial derivatives only one independent variable changes and all other indepen-
dent variables remain fixed.
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Example:

Parallel resistance

In an electrical circuit, the combined resistance mw from three resistors Ry, R, and

R connected in parallel, is

-

A\ Lyl

- -

.

What is the rate of change of the total resistance R with respect to mf

R
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2.2.4 Higher order derivatives

The second order partial derivatives of f, if they exist, are written as

P*f _O*f 8 sof
.ﬁnﬂ|%u .@R|®H%@|%AI@MV
_O*f *f 8 of
fn =5 = 507 = 32"

If fzy and f,; are both continuous, thei

P

Example: Returning to the example on page 76 for siE&Ea“ y) = xsiny + ycosz, ,
o’y _ o7

dzdy  Oydz’

calculate all of the second order partial derivatives of f and show that

%«x V%!\mr.:@ - mﬂ o’

Amu\\hlxoxmﬁ% .»._.Q\Q.wwgq

Am,xvn - Q .I%\ oL X =
Aﬁxw ummx @e = me%-_l m\c,,?x..
.NMX .H.mm%vi - OQW%.I SINX

2.2.5 Main points

e You should know the definition and meaning of partial derivatives.

e You should be able to evaluate partial derivatives of functions.
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2.3 The Tangent Plane

This section is covered in Stewart, Section 14.4 (Section 15.4).

2.3.1 Review for f(z)

Recall that if y = f(x) then the tangent line at the point (a

PR —
o —

(v [(@) = ')z —a)

fla

, fla)
& v=f@)+@e-a)

is given by

Example: Find the tangent line toy=f (z) = 2* at £ =1

e

N\lmt&i‘n&f ﬁ% e gt

dhe *

@i\ Apaﬁ\ N\% \K _1\3

IV

y
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2.3.2 Equation for a tangent plane

In general, the equation of the tangent plane to a given surface z = f(z,y) at

or, equivalently,

Indeed, the first two components of this vector equation for the tangent plane imply;
A=z —aand g =y — b. Substituting this into the third component gives

2= f(a,b) + Afala, b) + ufy(a, ) = f(a,0) + fela, b)(z — a) + £, (a, b)(y — b).

We also note that if we write Az =z —a, Ay =y — b and Az = z — f(a,b) then
the vector equation for the tangent plane may be rewritten as

(Az, Ay, Az) = y,.ﬁu._o?‘neﬁau b)) + (0,1, %@APSMV A€ R

This shows that if Az =1 and Ay =0 (i.e,, A =1 and g = 0) then Az = f,(a,b)
and if Az =0and Ay =1 (i.e,, A =0 and p = 1) then Az = f,(a,b), matching our
interpretation of \a and f, as the respective slopes of f in the x or y direction.

N |
2 = mmx&: ,m _\;N ﬁm

Oﬁ&w@ X = %ﬁwm&x\inﬁ\\n®
ﬂ:wﬂe - v/.,;\w.rc\&,.,.QM
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2 S» ¢)
Example: Find the equation for the tangent plane to the surface z = 1 — x% —
at the point P = (1,—1,-1). B

a 4 20 (e ) | o

yi
‘.bs-
\
=N
' N
"\\,
(N
i
|
A

The surface z =1 — a2 — 2

wJ/

. %i Tu.\% = I..\N\.VA ? %wv mﬁ%\v = i&N\ﬁ\ﬂ
mi mn\ﬁ\ ﬂm& NA_\\_J = - 7
m_uﬂ m&\ < 2 .
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Example: What is the plane tangent to the surface z = f (z,y) =4 —a?+ 4z —?

)

at (1,1)? :
m,ﬂ.m\%m\v,_.. %x\&.\u&x.\&T oy (4.
=~ =4 {(a

!

nmx %@\%\Dﬁ .\\NXL\P*_ J,x\A,\h =/
.m%?,mqwi‘\mﬂ . .@\-\b\mu == (-

mm&%g m\% i . Zm@ﬁ\
2= 42 A (DG,

N\U..NXiNkLn%g

e

f

The surface z =4 — 22 4+ 42 — ¢
and the tangent plane z = 6 + 2z — 2y

ws.nlW\A. 1) = ] = ﬁ\l\h
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Example: Find the tangent plane of z = f(2,y) = nﬂmw.w at (z,y) = (1,3).

/7y NN A
o= 4= Ola.f)=e""
?% N A
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b 4

2.3.3 Smoothness

1

Can we always find partial derivatives and tangent planes?

Example: Simple cusp-like functions are not smooth:

4
\acm%m surface: z =3 —
(z = 0) is undefined

|zl

A surface z = f(z,y) is smooth at (a,b) if f, f; and f, are all continuous at (a, b).
When you zoom in close enough to a smooth surface it looks like a plane.

One way to see this is to look at the contours. The contours of a plane are straight zﬂ, .

parallel lines, the same perpendicular distance apart. As you zoom into a_smooth

mﬁi@omﬁrmooaoﬁmmﬂimﬁdgo;ﬁ.HEmEmmﬁmgﬂQOmmﬁo.mPSLﬁ.w@mcwmmomwm A _
.

approximated by a plane; in fact it can be approximated by the tangent plane. Do

straight contours imply smoothness?
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Example: Brownian motion is not smooth. Look at the figure below. No matter
how much you zoom in, it always looks rough-—in fact, Brownian motion is a fractal.
There are surface-analogues to Brownian motion, demonstrated with the fractal
surface below.

Brownian motion Fractal surface
T T T T .

BT D ST S

1000

2.3.4 Main points

e You should know how to find a tangent plane to a smooth surface, and recog-
nise when a tangent plane or partial derivatives do not exist.




