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1 Solutions of first order ODEs

By the end of this section, you should be able to answer the following questions about
first order ODEs:

• How do you solve an IVP associated with directly integrable, separable or linear
ODEs? (Revision)

• Under what conditions does a solution to an IVP problem exist?

• Under what conditions is a solution to an IVP problem unique?

In MATH1052, you were introduced to Ordinary Differential Equations (ODEs)
and Initial Value Problems (IVPs) and saw how to find solutions to some special types
of first order equations. In particular, there should be three types of first order ODEs
that you are familiar with solving.

• Directly integrable:
dy

dx
= f(x).

• Separable:
dy

dx
= f(x)g(y).

• Linear:
dy

dx
= q(x)− p(x)y.
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In most applications involving first order ODEs, we are required to solve an IVP.
Generally, this is a problem of the form

dy

dx
= f(x, y), y(x0) = y0.

In otherwords, we seek to find solutions of the ODE which pass through the point
(x0, y0) in the x-y plane.

Consider the following three examples.

1.1 Example:
dy

dx
= x, y(0) = 1 has a unique solution

1.2 Example:
dy

dx
= 3xy1/3, y(0) = 0 has more than one solution
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1.3 Example:
dy

dx
=
x− y
x

, y(0) = 1 has no solution

1.4 Existence and uniqueness criteria

Here we consider the initial value problem of the form

dy

dx
= f(x, y), y(x0) = y0.

The main result concerns the conditions under which we have existence and uniqueness
of a solution.

If f and fy are continuous in some rectangle

R = {(x, y)| |x− x0| ≤ a, |y − y0| ≤ b},

then there is some interval |x− x0| ≤ h ≤ a which contains a unique solution
y = φ(x) of the initial value problem

dy

dx
= f(x, y), y(x0) = y0.

The above theorem only tell us that a solution exists or is unique locally (i.e.,
in the rectangle R). Beyond R, we simply don’t know. Let’s look at the previous
three examples in the context of the theorem. In the next lecture, we look closer at
understanding these conditions and how they arise.
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1.5 Example:
dy

dx
= x, y(0) = 1

1.6 Example:
dy

dx
= 3xy1/3, y(0) = 0

1.7 Example:
dy

dx
=
x− y
x

, y(0) = 1
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2 Method of successive approximations

By the end of this section, you should be able to answer the following questions:

• How do you convert a first order ODE to an integral equation?

• How do you generate the sequence of functions for method of successive approx-
imations?

• Under what conditions does this iterative method work? (Or: What can go
wrong?)

Here we look at a proof of the existence and uniqueness theorem from the previous
chapter. The presentation is based on that of the book Elementary Differential Equa-
tions and Boundary Value Problems by W.E. Boyce and R.C. DiPrima (ed. 10, Wiley,
2012).

2.1 A modified theorem

To start, we note that it is always possible to apply a variable shift so that the initial
value problem can be written as

dy

dx
= f(x, y), y(0) = 0. (1)

2.1.1 Example: y′ = 2(x− 1)(y − 1), y(1) = 2

Without loss of generality, we will consider this problem where the initial point is
at the origin. We can restate the result as follows.

If f and fy are continuous in some rectangle

R = {(x, y)| |x| ≤ a, |y| ≤ b},

then there is some interval |x| ≤ h ≤ a which contains a unique solution
y = φ(x) of the initial value problem

dy

dx
= f(x, y), y(0) = 0.
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2.2 Equivalence with integral equation

Let y = φ(x) be a solution to the IVP (1), and note that the function F (x) = f(x, φ(x))
is a continuous function of x only. We then have

φ(x) =

∫ x

0

F (t) dt =

∫ x

0

f(t, φ(t)) dt. (2)

Note that φ(0) = 0. This is an example of an integral equation. Conversely, let φ(x)
satisfy the integral equation (2). By the Fundamental Theorem of Integral Calculus,
φ′(x) = f(x, φ(x)), which implies that y = φ(x) is a solution of the IVP (1). In other
words, the IVP (1) and the integral equation (2) are equivalent, meaning that a solution
of one is a solution of the other. Herein we work with (2).

2.3 Method of successive approximations

The goal of the approach is to generate a sequence of functions {φ0, φ1, . . . , φn, . . .}.
Starting with the initial function φ0(x) = 0 (satisfying the initial condition of (1)), the
sequence is generated iteratively by

φn+1(x) =

∫ x

0

f(t, φn(t)) dt. (3)

Note that each φn satisfies φn(0) = 0, but generally not the integral equation (2) itself.
If there is a k, however, such that φk+1(x) = φk(x), then φk(x) is a solution of the
integral equation (2) and hence the IVP (1). Generally this does not occur, but we
may instead consider limit functions.

There are four key points to consider:

1. Do all members of the sequence exist?

2. Does the sequence converge to a limit function φ?

3. What are the properties of φ?

4. If φ satisfies the IVP (1), are there other solutions?
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2.4 Example: y′ = 2x(y + 1), y(0) = 0
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2.5 Discussion

Even though the example demonstrates many of the features that need to be considered,
here we elaborate more on the four points outlined earlier.

1. Existence of {φ0, φ1, . . . , φn, . . .}

The conditions of the theorem state that f and fy are continuous in the rectangle.
Even still, it may be that there is a j such that the curve y = φj(x) contains points
outside R. In such a case, to apply the iteration and determine φj+1(x), we would have
to evaluate f(x, y) at points where f may not be continuous or even defined! We can,
however, restrict x to a smaller interval if necessary.

To find such an interval, we note that if f is continuous on a closed region, then f
is bounded. In other words, there is an M such that

|f(x, y)| ≤M, ∀(x, y) ∈ R.

Also, φj(0) = 0. Since f(x, φj(x)) = φ′j+1(x), the largest slope of the curve y = φj+1(x)
is M . There are two situations which can arise, as depicted in the following diagrams:

We can therefore say that (x, φk+1(x)) ∈ R provided |x| ≤ h, where h = min( b
M
, a).

We then consider the values of (x, y) in the (possibly smaller) rectangle

R′ = {(x, y)| |x| ≤ h, |y| ≤ b}.

In this case, all members of the sequence exist.
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2. Convergence?

Note that we can write

φn(x) = φ1(x) + [φ2(x)− φ1(x)] + [φ3(x)− φ2(x)] + · · ·+ [φn(x)− φn−1(x)], (4)

which is the nth partial sum of the series

S(x) = φ1(x) +
∞∑
k=1

[φk+1(x)− φk(x)].

Convergence of S(x) implies convergence of the sequence {φn(x)}.
Using the Mean Value Theorem, it is possible to show that if fy is continuous in

R′, then there exists a K > 0 such that

|f(x, y1)− f(x, y2)| ≤ K|y1 − y2|,

where (x, y1), (x, y2) ∈ R′. In particular, we have

|f(x, φn(x))− f(x, φn−1(x))| ≤ K|φn(x)− φn−1(x)|. (5)

Set n = 1 in (5), and show that ∃M > 0 such that |φ2(x)− φ1(x)| ≤MK|x|2/2.
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It is then possible to show by induction that

|φn(x)− φn−1(x)| ≤ MKn−1|x|n

n!
≤ MKn−1hn

n!
.

Given the expression (4) above for φn(x), we have

|φn(x)| ≤ |φ1(x)|+ |φ2(x)− φ1(x)|+ · · ·+ |φn(x)− φn−1(x)| (6)

≤ M

K

(
Kh+

(Kh)2

2!
+ · · ·+ (Kh)n

n!

)
In the limit as n→∞, this expression becomes

M

K
(eKh − 1).

Therefore the sum in (6) converges, and so the sum in (4) is absolutely convergent. We
conclude that the sequence {φn(x)} converges, since it is the sequence of partial sums
of a convergent series.

3. Properties of φ(x) = lim
n→∞

φn(x)

We can make use of the previous discussion in Point 2 to establish uniform convergence
(see MATH2400/MATH2401) of the sequence {φn}. In particular, the functions φn
are continuous for all n, so uniform convergence implies the limit function is also
continuous.
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Now we take the limit of both sides of equation (3):

φ(x) = lim
n→∞

∫ x

0

f(s, φn(s))ds

=

∫ x

0

lim
n→∞

f(s, φn(s))ds.

This last step is allowed only because the sequence {φn} converges uniformly. Also,
since f is continuous, we can develop this as

φ(x) =

∫ x

0

f(s, lim
n→∞

φn(s))ds

=

∫ x

0

f(s, φ(s))ds.

That is, φ solves the integral equation (2) and hence the IVP (1).

4. Uniqueness?

Here we proceed as in the earlier example. That is, we assume y = ψ(x) is another
solution. It is possible to show that

|φ(x)− ψ(x)| ≤ A

∫ x

0

|φ(s)− ψ(s)|ds

for 0 ≤ x ≤ h and suitable A > 0. Then apply the same argument as in the example.
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3 Exact first order ODEs

By the end of this section, you should be able to answer the following questions about
first order ODEs:

• How do you identify an exact ODE?

• How do you solve an exact ODE?

3.1 Definition

First recall that if z = f(x, y) is a differentiable function of x and y, where x = g(t)
and y = h(t) are both differentiable functions of t, then z is a differentiable function
of t whose derivative is given by the chain rule:

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Now suppose the equation

f(x, y) = C

defines y implicitly as a function of x (here C is a constant). Then y = y(x) can be
shown to satisfy a first order ODE obtained by using the chain rule above. In this case,
z = f(x, y(x)) = C, so

(0 = )
dz

dx
=

∂f

∂x

dx

dx
+
∂f

∂y

dy

dx

⇒ fx + fyy
′ = 0. (7)

A first order ODE of the form

P (x, y) +Q(x, y)
dy

dx
= 0 (8)

is called exact if there is a function f(x, y) (compare (8) with (7) above) such that

fx(x, y) = P (x, y) and fy(x, y) = Q(x, y).

The solution is then given implicitly by the equation

f(x, y) = C.

The constant C can usually be determined by some kind of “initial condition”.

Given an equation of the form (8), how do we determine whether or not it is exact?
There is a simple test.
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3.2 Test for exactness

Let P, Q,
∂P

∂y
, and

∂Q

∂x
be continuous over some region of interest. Then

P (x, y) +Q(x, y)
dy

dx
= 0

is an exact ODE iff
∂P

∂y
=
∂Q

∂x

everywhere in the region.

The problem of actually determining f(x, y) is still outstanding. Consider the
following example.

3.3 Example: 2x+ ey + xeyy′ = 0
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3.4 Almost exact ODEs and integrating factors

Let’s say that we have an equation

P (x, y) +Q(x, y)
dy

dx
= 0

such that
∂P

∂y
6= ∂Q

∂x
.

The test we have just seen tells us that the ODE is not exact. Are we still able to do
anything with it? Here we consider using an “integrating factor”, which is different to
the one introduced to solve linear ODEs.

The idea is to multiply the ODE by a function h(x, y) and then see if it is possible
to choose h(x, y) such that the resulting equation

h(x, y)P (x, y) + h(x, y)Q(x, y)
dy

dx
= 0

is exact. We know from the test that this new equation is exact if and only if

∂

∂y
(hP ) =

∂

∂x
(hQ).

Let’s see if we can find such a function:

In general, the equation for h(x, y) is usually just as difficult to solve as the original
ODE. In some cases, however, we may be able to find an integrating factor which is a
function of only one of the variables x or y. Let’s try h ≡ h(x):
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3.5 Example: (3xy + y2) + (x2 + xy)
dy

dx
= 0
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4 Hyperbolic functions

By the end of this section, you should be able to answer the following questions:

• What is the definition of the sinh and cosh functions?

• What is the definition of the inverse hyperbolic functions?

• What are the derivatives and anti-derivatives of these functions?

• How are hyperbolic functions used in the catenary problem?

4.1 Properties of hyperbolic functions

We define the functions cosh(x) and sinh(x) by

cosh(x) =
ex + e−x

2
,

sinh(x) =
ex − e−x

2
.

We can check by direct calculation that

cosh2(x)− sinh2(x) = 1.

Compare this with the identity

cos2(θ) + sin2(θ) = 1 (9)

for trig functions. The identity (9) allows us to parametrise a unit circle. By setting
x(t) = cos(t), y(t) = sin(t), we have

cos2(t) + sin2(t) = x2 + y2 = 1,

which is the equation of the unit circle.
If we set x(t) = cosh(t) and y(t) = sinh(t), this gives a parametrisation for a

hyperbola (only the right branch), since

cosh2(t)− sinh2(t) = x2 − y2 = 1,

which is the equation of a hyperbola. This is why we call these functions “hyperbolic
functions”.

These hyperbolic functions satisfy properties similar to their trigonometric coun-
terparts. For example

d

dx
(cosh(x)) =

ex − e−x

2
= sinh(x),

d

dx
(sinh(x)) =

ex + e−x

2
= cosh(x).
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cosh(0) = 1, cosh(x) ≥ 1, cosh(x) is an even function.
sinh(0) = 0, sinh(x) is an odd function.
We also define

tanh(x) =
sinh(x)

cosh(x)
=

1− e−2x

1 + e−2x
, | tanh(x)| < 1,

coth(x) =
cosh(x)

sinh(x)
.
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4.2 Inverse hyperbolic functions

The inverse function of cosh is denoted arcosh .
The inverse function of sinh is denoted arsinh .
The inverse function of tanh is denoted artanh .
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Figure 5: Graph of arcosh (x)
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We have the following:∫
dx√

1 + x2
= arsinh (x) + c∫

dx√
x2 − 1

= arcosh (x) + c, x > 1.

4.2.1 Show that
d

dx
(arsinh (x)) =

1√
1 + x2
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4.2.2 Evaluate the integrals

∫
dx√

1 + x2
and

∫
dx√
x2 − 1
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4.2.3 Show that
d

dx
(artanh (x)) =

1

1− x2
, |x| < 1

Using partial fractions, we can also evaluate the integral∫
dx

1− x2
=

1

2
ln

(
1 + x

1− x

)
+ C.

In fact, we have the following identities

artanh (x) =
1

2
ln

(
1 + x

1− x

)
,

arsinh (x) = ln
(
x+
√
x2 + 1

)
,

arcosh (x) = ln
(
x+
√
x2 − 1

)
.
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4.2.4 Show that arsinh (x) = ln
(
x+
√
x2 + 1

)
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4.3 Further reading: The catenary problem

Figure 8: Profile of a heavy chain hanging under gravity.

One of the most famous problems where hyperbolic functions are used is in deter-
mining the profile of a heavy chain (of constant density ρ) suspended from two points
of equal height (known as a catenary curve).

To derive the differential equation satisfied by the profile y(x), we look at the forces
acting on a small element of arc (inside the rectangular box in figure 8).

sδ

V+δV

T+δT

V
T

H

H

Figure 9: A small arc of heavy chain of length δs.

Let T (x) be the tensile force in the chain with constant horizontal component H
(since the load has no x component) and vertical component V (x). In figure 9 the
vertical components of the tensile force at either end of the arc are V and V + δV .

The mass of the arc will be ρ(δs), so that the force due to gravity is ρg(δs).
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The horizontal equilibrium is the trivial relation H = H, whereas the vertical
equilibrium is the more informative

(V + δV ) = V + ρg(δs).

Dividing both sides by δx gives
δV

δx
= ρg

δs

δx
.

From geometry, we also have the approximation

δy

δx
≈ V

H
.

We also have the approximation to the arclength δs

(δs)2 ≈ (δx)2 + (δy)2 ⇒ δs

δx
≈

√
1 +

(
δy

δx

)2

Finally we take the limit δx→ 0 so that δy → 0 and δs→ 0 simultaneously. We then
have the following equations

dV

dx
= ρg

ds

dx
,

V = H
dy

dx
,

ds

dx
=

√
1 +

(
dy

dx

)2

.

Putting these equations together gives the ODE satisfied by the profile y(x),

d2y

dx2
=
ρg

H

√
1 +

(
dy

dx

)2

.
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5 Linear second order nonhomogeneous ODEs, the

Wronskian

By the end of this section, you should be able to answer the following questions:

• What is the form of the general solution to a linear, second order nonhomogeneous
ODE?

• How do you define the Wronskian of an nth order linear second order homoge-
neous ODE?

• What is the relationship between the Wronskian and linearly independent solu-
tions to a linear, second order homogeneous ODE?

ODEs can be split into two classes: linear and non-linear. Non-linear ODEs are
generally very difficult to solve. Linear ODEs are simpler because their solutions have
general properties which facilitate working with them. There are also well established
methods for solving many linear ODEs of practical significance.

A second order ODE is called linear if it can be written in the form

y′′ + p(x)y′ + q(x)y = r(x). (10)

Any second order ODE which cannot be written in this form is called non-linear. Note
that y and its derivatives appear linearly and throughout we assume that p, q and r
are continuous functions on some open interval I.

Over the next few sections we study linear second order ODEs. The motivation for
studying second order ODEs is twofold. Firstly they have applications in mechanics
and electric circuit theory, so anyone studying either of these fields will most likely
come across second order ODEs. Secondly, the theory of linear second order ODEs
is very similar to that of higher order linear ODEs, so that the transition to studying
higher order linear ODEs would not require too many new ideas.

A great deal of this discussion can be found in the book Elementary Differential
Equations and Boundary Value Problems by W.E. Boyce and R.C. DiPrima (ed. 10,
Wiley, 2012).

5.1 Existence and uniqueness theorem

The key result for initial value problems related to second order linear ODEs is given
as follows.

Consider the IVP

y′′ + p(x)y′ + q(x)y = r(x), y(x0) = y0, y′(x0) = y′0,

where p, q and r are continuous functions on an open interval I that contains
x0. Then there is exactly one solution of the IVP which exists throughout I.

The proof of this theorem is beyond the scope of the course. Second order linear
ODEs were introduced in MATH1052/MATH1072, and we first recall some important
results and concepts, before looking more closely at certain aspects.
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5.2 The superposition principle

Recall that if r(x) = 0 in equation (10), then we call the ODE homogeneous. If
r(x) 6= 0, then the ODE is nonhomogeneous.

For any homogeneous linear equation, if y1 and y2 are solutions, so too is the linear
combination Ay1 +By2. It is important to note that the superposition principle is not
true for nonlinear equations and nonhomogeneous.

5.3 Linear independence

The functions f1, f2, . . . , fn are said to be linearly dependent on an interval I if there
is a set of constants k1, k2, . . . , kn, not all zero, such that

k1f1(x) + k2f2(x) + · · ·+ knfn(x) = 0

for all x ∈ I. The functions are said to be linearly independent on I if they are not
linearly dependent there.

5.3.1 Example: linear independence of g1(x) = 1, g2(x) = x, g3(x) = x2 on
the interval −∞ < x <∞
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5.4 General solution (homogeneous case), Wronskian of solu-
tions

From the superposition principle, we can see that given two solutions, y1 and y2 of
the ODE, we are able to construct an infinite family by taking the linear combination
Ay1 +By2. The question that arises is whether or not this family contains all solutions.

A first step is to understand if we can choose constants A and B to satisfy given
initial conditions. Let f1 and f2 be two differentiable functions on the interval I. The
Wronskian of f1 and f2 at x ∈ I is defined as

W (f1, f2)(x) =

∣∣∣∣ f1(x) f2(x)
f ′1(x) f ′2(x)

∣∣∣∣ = f1(x)f ′2(x)− f ′1(x)f2(x).

Now let y1 and y2 be solutions of the ODE

y′′ + p(x)y′ + q(x)y = 0.

Is it possible to find A and B so that the initial conditions y(x0) = y0 and y′(x0) = y′0
are satisfied by y(x) = Ay1(x) +By2(x)?
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We have the following results involving the Wronskian.

Suppose that y1 and y2 are two solutions of

y′′ + p(x)y′ + q(x)y = 0,

and consider the associated IVP with initial conditions

y(x0) = y0, y′(x0) = y′0.

It is always possible to choose A and B so that

y = Ay1(x) +By2(x)

satisfies the IVP if and only if

W (y1, y2)(x0) 6= 0.

It is the next result that allows us to use the phrase general solution that was
introduced in MATH1052/MATH1072. The proof makes use of the previous result.

Let y1 and y2 be two solutions of

y′′ + p(x)y′ + q(x)y = 0.

The family of solutions
y = Ay1(x) +By2(x)

with arbitrary coefficients A,B includes every solution of this ODE if and only
if there is a value x0 such that W (y1, y2)(x0) 6= 0. In such a case we call y1

and y2 a fundamental set of solutions.
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5.5 Abel’s Theorem

Let y1 and y2 be solutions of

y′′ + p(x)y′ + q(x)y = 0,

where p and q are continuous on an open interval I. The Wronskian is given by

W (y1, y2)(x) = Ce−
∫
p(x) dx,

where C is a constant that depends on y1 and y2, but not x. Moreover W (y1, y2)(x)
either is zero for all x ∈ I, or else is never zero in I.
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5.6 Nonhomogenous linear ODEs

Now we consider equations of the form

y′′ + p(x)y′ + q(x)y = r(x), r(x) 6= 0. (11)

You should know from MATH1052/MATH1072 that the general solution on an
open interval I is of the form

y = yH + yP ,

where yH is the general solution of the homogeneous equation (with r(x) = 0) on I
and yP is a particular solution of (11) on I containing no arbitrary constants.

One strategy for finding the general solution is to first find yH , then find yP . See if
you can work through the following example (review from MATH1052/MATH1072).

5.6.1 Example: y′′ − 2y′ + y = ex + x
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5.7 Further reading: The method of undetermined coefficients

In what follows, we determine a solution to the homogenous equation, and then try
a form (with undetermined coefficients) for the particular solution which looks like it
will result in the function on the right hand side.

The method of undetermined coefficients, as presented here, only works for the
constant coefficient case:

y′′ + ay′ + by = r(x),

and r(x) contains exponentials, polynomials, sines and cosines, or sums and certain
products of these functions.

Choose for yP a form similar to r(x), involving unknown coefficients. The coeffi-
cients are then determined by substituting yP into the ODE.

ri(x) gi(x) ri(x) gi(x)

keγx aeγx k cosωx, a cosωx+ b sinωx
k sinωx

N∑
i=0

kix
i, N = 0, 1, 2, . . .

N∑
i=0

aix
i keαx cosωx, eαx(a cosωx+ b sinωx)

keαx sinωx

We follow these basic steps.

1. Find a solution yH to the corresponding homogeneous equation.

2. For r(x) = r1(x) + r2(x) + . . . + rn(x), we first make a guess g(x) = g1(x) +
g2(x) + . . .+ gn(x) for yP , where the gi(x) correspond to the ri(x) entries in the
table above.

3. If a term gi(x) appears in yH , replace gi(x) in the initial guess by xgi(x).

4. If any of the xgi(x) from step 3 appear in yH , replace xgi(x) by x2gi(x).

5. Substitute the modified guess g(x) into the left hand side of the ODE and equate
coefficients on both sides. Once you have worked out the coefficients, the guess
g(x) becomes yP .
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6 Variation of parameters

By the end of this section, you should be able to answer the following questions:

• Under what conditions does the method work?

• What functions need to be determined first before using the method?

• How do you use the variation of parameters method to solve a nonhomogeneous
linear second order ODE?

The method of undetermined coefficients is very easy to apply, but only works for
constant coefficients with certain r(x). For other cases, the variation of parameters
works well. The process is the following:

• Solve y′′ + p(x)y′ + q(x)y = 0, obtain a fundamental set of solutions y1, y2 and
calculate the Wronskian, W (y1, y2)(x) ≡ W .

• Set yP = u(x)y1(x)+v(x)y2(x) and substitute into the ODE. We also impose the
condition u′y1 + v′y2 = 0. We have the freedom to impose this extra arbitrary
condition because we have two functions (u and v) and only one equation they
need to satisfy arising from the ODE.

• We obtain

u(x) = −
∫
y2r

W
dx, v(x) =

∫
y1r

W
dx.

This approach is a variant of the method of Reduction of Order, which prescribes
that we take a solution, say y1 of the associated homogeneous equation and seek a
particular solution of the form yp = U(x)y1.
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6.1 Derive the formulae for u(x) and v(x) in the variation of
parameters
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6.2 Example: y′′ − 4y′ + 5y = 2e2x/ sinx
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6.3 Repeat the previous example using reduction of order
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6.4 Summary of ODE techniques and types of equations you
should know

• First order, directly integrable

• First order, separable

• First order, linear, integrating factor

• First order existence and uniqueness criteria

• First order, exact

• Second order homogeneous, linear, constant coefficients

• Second order nonhomogeneous, constant coefficients, method of undetermined
coefficients for certain cases

• Second order nonhomogeneous, variation of parameters.

• Reduction of order
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7 Vector spaces

By the end of this section, you should be able to understand:

• The definition of a vector space.

• Many new examples of vector spaces.

• The significance of a basis.

• How to find the transition matrix from one basis to another.

Notation. For the next set of lectures on linear algebra, F stands for R or C. Thus,
if a statement holds for or applies to both number sets, we may simply state it for F.
Elements of F are often called scalars.

7.1 Definition

Let V be a nonempty set on which are defined operations “+” (called addition) and
“·” (called scalar multiplication). V is a vector space (over F) if the following hold
for all u,v,w ∈ V and all k, ` ∈ F:

(V1) u + v ∈ V (closure)

(V2) u + v = v + u (additive commutativity)

(V3) u + (v + w) = (u + v) + w (additive associativity)

(V4) ∃0 ∈ V such that u + 0 = u (zero vector, or additive identity)

(V5) For each u ∈ V , ∃ (−u) ∈ V such that u + (−u) = 0 (additive inverse)

(V6) k · u ∈ V
(V7) k · (u + v) = k · u + k · v (multiplicative-additive distributivity)

(V8) (k + `) · u = k · u + ` · u (additive-multiplicative distributivity)

(V9) k · (` · u) = (k`) · u (multiplicative-multiplicative distributivity)

(V10) 1 · u = u (multiplicative identity)

The scalar multiplication symbol is often omitted. Elements of a vector space are
usually called vectors.
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7.2 Example: Fn – set of n-tuples

7.3 Example: Mm,n(F) – set of m× n matrices
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7.4 Example: C[a, b] – set of continuous real-valued functions
on [a, b]

7.5 Example: Pn(F) – set of polynomials of degree at most n

7.6 Example: Set of solutions to a homogeneous linear ODE
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7.7 Familiar concepts in linear algebra

Here we lists several concepts with which you should already be familiar.

• Linear combination

For v1, v2, . . . , vn ∈ V and α1, α2, . . . , αn ∈ F, we call

α1v1 + α2v2 + · · ·+ αnvn

a linear combination of the vectors v1, v2, . . . , vn.

• Linear independence

A non-empty set of vectors S = {v1, v2, . . . , vn} in V is said to be linearly depen-
dent if there exist scalars α1, α2, . . . , αn not all zero such that

α1v1 + α2v2 + · · ·+ αnvn = 0.

Otherwise, S is called linearly independent, i.e. S is linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 ⇒ α1 = α2 = · · · = αn = 0.

• Subspace

A subset W ⊆ V is called a subspace if W is also a real vector space with the
same addition and scalar multiplication. In particular, W is required to close
under addition and scalar multiplication.

• Span

The span of a non-empty set of vectors S = {v1, v2, . . . , vn} in V is the set of
all linear combinations of vectors in S, denoted span(S). The set span(S) is a
subspace of V .

7.8 Basis

Let β = {v1, . . . ,vn} be a set of vectors in the vector space V . β is a basis for V if

(B1) β is linearly independent;

(B2) β spans V .

Note that the notion of a basis is only defined here for finite sets. A nonzero vector
space is finite-dimensional if it contains a finite set of vectors that forms a basis. If
no such set exists, the vector space is infinite-dimensional.

Let V be a finite-dimensional vector space. The number of vectors in any basis for
V is the same, and this number is known as the dimension of V .
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An ordered basis for a vector space is a basis endowed with a specific order. For
some vector spaces, there is a canonical ordered basis, called a standard basis.
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7.9 Decomposition theorem

Let β = {v1, . . . ,vn} be a set of vectors in the vector space V . Then, β is a basis for
V iff each w ∈ V can be uniquely expressed as a linear combination of vectors in β.
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7.10 Transition matrix

Let β = {v1, . . . ,vn} be an ordered basis for the vector space V . For u ∈ V , let
a1, . . . , an be (the unique) scalars such that

u =
n∑
i=1

aivi.

The coordinate vector of u relative to β is given by

[u]β =

a1
...
an

 .

Another common notation for this is [u]β.
Let β′ be another ordered basis for V . The coordinate vector of u relative to β′ is

thus denoted by [u]β′ . The transition matrix from β to β′, denoted by Pβ→β′ , relates
the two coordinate vectors of u as

[u]β′ = Pβ→β′ [u]β.

If β′′ is yet another ordered basis for V , then

Pβ′→β′′Pβ→β′ = Pβ→β′′ =⇒ Pβ′→βPβ→β′ = Pβ→β = I,

where I is the n× n identity matrix.
To illustrate, let us consider the two ordered bases β = {1, x} and β′ = {1 + x, 2x}

for P1(F). As the vector (or polynomial) u = a+ bx also can be written as

u = a(1 + x) + 1
2
(b− a)(2x),

we have

[u]β =

(
a
b

)
and [u]β′ =

(
a

1
2
(b− a)

)
.

The corresponding transition matrix Pβ→β′ is given as follows:
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8 Real inner product spaces

By the end of this section, you should understand the definition of inner product space,
and be aware of many new examples.

Every vector space in this section is real.

8.1 Dot product

The familiar dot product, u · v, of the two vectors u,v ∈ R3 is given by

u · v = u1v1 + u2v2 + u3v3,

where u = (u1, u2, u3) and v = (v1, v2, v3). This is readily generalised to Rn by

u · v = u1v1 + . . .+ unvn, where u = (u1, . . . , un), v = (v1, . . . , vn).

This dot product has the following key properties:

8.2 Inner product

Inspired by the dot product on Rn, we define a so-called inner product on a general
real vector space by elevating the key properties of the dot product to axioms.

Accordingly, an inner product on V is a function that takes each ordered pair
(u,v) of elements of V to a real number, denoted by 〈u,v〉, such that for all u,v,w ∈ V
and all k ∈ R:

(I1) 〈u,v〉 = 〈v,u〉
(I2) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
(I3) 〈k · u,v〉 = k〈u,v〉
(I4) 〈u,u〉 ≥ 0

(I5) 〈u,u〉 = 0 iff u = 0 (where 0 is the unique zero vector)

A vector space with an inner product associated to it is called an inner product
space. As we are assuming that all vector spaces are real in this section, we have thus
introduced the notion of a real inner product space. One can also define inner products
on complex vector spaces, thereby introducing complex inner product spaces, but they
are beyond the scope of these lectures.
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8.3 Example: Weighted dot product
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8.4 Example: Inner product generated by a matrix

67



8.5 Example: Inner product on Mn,n(R)
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8.6 Example: Standard inner product on Pn(R)

8.7 Example: Evaluation inner product on Pn(R)
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8.8 Example: Inner product on C[a, b]
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9 Solving linear equations

By the end of this section, you should be able to answer the following questions:

• How do you use Gaussian elimination to find a row echelon form of a matrix?

• What are the three cases for solutions to systems of linear equations?

• How do you solve a system of linear equations?

• What is the rank of a matrix?

Say we have m linear equations in n variables:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We can write these equations in matrix form: Axxx = bbb.

A = [aij] is the m× n coefficient matrix.

xxx =

 x1
...
xn

 is the column vector of unknowns, and bbb =

 b1
...
bm

 is the column

vector of the right hand side.

Note: aij, bj ∈ R or C.

9.1 Gaussian Elimination

To solve Axxx = bbb:
write augmented matrix: [A|bbb].

1. Find the left-most non-zero column, say column j.
2. Interchange top row with another row if necessary, so top element of column j is
non-zero. (The pivot.)
3. Subtract multiples of row 1 from all other rows so all entries in column j below the
top are then 0.
4. Cover top row; repeat 1 above on rest of rows.
Continue until all rows are covered, or until only 00 . . . 0 rows remain.

The result is a triangular system, easily solved by back substitution: solve the last
equation first, then 2nd last equation and so on.
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9.1.1 Example

Use Gaussian elimination to solve:

x3 − x4 = 2

−9x1 − 2x2 + 6x3 − 12x4 = −7

3x1 + x2 − 2x3 + 4x4 = 2

2x3 = 6
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9.1.2 Definition (row echelon form)

A matrix is in row echelon form (r.e.f.) if each row after the first starts with more
zeros than the previous row (or else rows at bottom of matrix are all zeros).

The Gauss algorithm converts any matrix to one in row echelon form. The 2
matrices are equivalent, that is, they have the same solution set.

9.1.3 Elementary row operations

1. ri ↔ rj : swap rows i and j.
2. ri → ri − crj : replace row i with
(row i minus c times row j).
3. ri → cri :
replace row i with c times row i, where c 6= 0.

The Gauss algorithm uses only 1 and 2.

9.2 Possible solutions for Axxx = bbb

Consider the r.e.f. of [A|bbb]. Then we have three possibilities:
(1) Exactly one solution; here the r.e.f. gives each variable a single value, so the

number of variables, n, equals the number of non-zero rows in the r.e.f.
(2) Infinitely many solutions; here the number of non-zero rows of the r.e.f. is less

than the number of variables.
For cases (1) and (2), the system is said to be consistent.
(3) No solution; when one row of r.e.f. is (0 0 . . . d) with d 6= 0. We can’t solve

0x1 + 0x2 + · · ·+ 0xm = d if d 6= 0; it says 0 = d. In this case the system is said to be
inconsistent.

Note that a homogeneous system has bbb = 000, i.e., all zero RHS. Then we always have
at least the trivial solution, xi = 0, 1 ≤ i ≤ n.

Let A be an m× n matrix:

• The subspace of Rn spanned by the rows of A is called the row space of A, denoted
Row(A).

• The subspace of Rm spanned by the columns of A is called the column space of
A, denoted Col(A).

• The subspace of Rn that is the solution space of the homogeneous equation
Axxx = 000 is called the nullspace of A (denoted N(A)), and its dimension is often
referred to as the nullity, denoted nullity(A).

• The rank of A, denoted rank(A), is the dimension of the column space of A.
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9.2.1 Examples

x1 + x2 − x3 = 0

2x1 − x2 = 0

4x1 + x2 − 2x3 = 1
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x1 − 2x2 + 4x3 = 2

2x1 − 3x2 + 7x3 = 6

x2 − x3 = 2

These examples highlight some important results for linear systems.

A system of linear equations Axxx = bbb is consistent if and only if bbb is in the
column space of A.

If xxx0 is any solution of a consistent linear system Axxx = bbb, and if {vvv1, vvv2, . . . , vvvk}
is a basis for the nullspace of A, then every solution of Axxx = bbb can be expressed
in the form

xxx = xxx0 + c1vvv1 + c2vvv2 + · · ·+ ckvvvk.

In other words, if Axxx = bbb corresponds to a consistent linear system of m equations in
n unknowns (so A is understood to be m × n), and if rank(A) = r, then the solution
contains n− r free parameters.
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10 Orthogonality

The goal of this section is to develop our understanding of orthogonality in the context
of inner product spaces.

10.1 Norm

The norm (or magnitude or length) of an element v = (v1, . . . , vn) of Rn is given by
the familiar expression

||v|| =
√

v · v =
√
v2

1 + . . .+ v2
n.

There is a similar notion for any real inner product space V . The norm of a vector
v ∈ V , denoted by ||v||, is thus defined by

||v|| =
√
〈v,v〉.

A vector with norm 1 is called a unit vector.
How would we define the distance, d(u,v), between two vectors u,v ∈ V ? A

natural notion of distance between two vectors should be independent of the order we
happen to be viewing them. That is, we want the distance measure to be symmetric:
d(u,v) = d(v,u). Again using Rn as inspiration, we now define the distance between
two vectors u,v ∈ V as

d(u,v) = ||u− v||.

The symmetry d(u,v) = d(v,u) follows from

〈u− v,u− v〉 = 〈u,u〉 − 〈u,v〉 − 〈v,u〉+ 〈v,v〉 = 〈v − u,v − u〉.

Note that the notions of norm and distance are relative to the inner product used!
For example, with the inner product given in Example 8.8, the norm of a real-valued
continuous function on [−1, 1] is given as follows:

As in Rn with inner product given by the usual dot product, we say that two vectors
u,v ∈ V are orthogonal if

〈u,v〉 = 0.

We need a bit of preparation before we can talk more generally about the angle between
two vectors, see Section 10.7.
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10.2 Pythagorean theorem

Let V be a real inner product space, and let u,v ∈ V . Then,

||u + v||2 = ||u||2 + ||v||2 ⇐⇒ 〈u,v〉 = 0.

10.3 Cauchy-Schwarz inequality

Let V be a real inner product space, and let u,v ∈ V . Then,

|〈u,v〉| ≤ ||u|| ||v||.

Moreover, this inequality is an equality if and only if u or v is a scalar multiple of the
other vector.
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10.4 Triangle inequality

Let V be a real inner product space, and let u,v ∈ V . Then,

||u + v|| ≤ ||u||+ ||v||.

10.5 Example: C[−1, 1]

10.6 Example: P2(R)
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10.7 Angle between two vectors
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10.8 Orthogonal complement

Let U be a subset of the real inner product space V . The orthogonal complement
of U , denoted by U⊥, is the set of all vectors in V that are orthogonal to every vector
in U . That is,

U⊥ = {v ∈ V | 〈v,u〉 = 0 for every u ∈ U}.

This is a vector space with addition and scalar multiplication inherited from V .

10.8.1 For A ∈ Mm,n(R), Row(A)⊥ = N(A) with respect to the Euclidean
inner product

In fact, U⊥ is an example of a subspace. Indeed, a nonempty subset W of a vector space
V is a subspace of V if it is a vector space under the addition and scalar multiplication
defined on V . To verify that a subset is a subspace, one checks the following:
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11 Gram-Schmidt process

The goal of this section is to discuss orthogonal projections, and develop a way of
constructing an orthonormal basis for an inner product space.

11.1 Orthogonal set

Let V be a real inner product space. A nonempty set of vectors in V is orthogonal if
each vector in the set is orthogonal to all the other vectors in the set. That is, the set
{v1, . . . ,vn} ⊆ V is orthogonal if

〈vi,vj〉 = 0, i 6= j.

Let S be a finite set of vectors in V such that 0 /∈ S. Then,

S orthogonal =⇒ S linearly independent.
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11.2 Orthonormal basis

An orthogonal set of vectors in V is called orthonormal if all the vectors in the set
are unit vectors. That is, the set {e1, . . . , en} ⊂ V is orthonormal if

〈ei, ej〉 = δi,j,

where the Kronecker delta is defined by

δi,j =

{
0, i 6= j,

1, i = j.

Examples in Rn endowed with the usual dot product are given as follows:

An orthonormal basis for V is a basis for V that is also an orthonormal set.
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11.3 Decomposition theorem

Let S = {e1, . . . , en} be an orthonormal basis for V , and let u ∈ V . Then,

u = 〈u, e1〉e1 + . . .+ 〈u, en〉en

and
||u||2 = 〈u, e1〉2 + . . .+ 〈u, en〉2.
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11.4 Orthogonal projection

Let U be a finite-dimensional subspace of the real inner product space V . Then, each
v ∈ V can be written in a unique way as

v = u + w, u ∈ U, w ∈ U⊥.

In the proof, we will assume that U has an orthonormal basis S = {e1, . . . , ek}. As
we will see in Section 11.6, this assumption is redundant since every finite-dimensional
inner product space has such a basis.

The vector u ∈ U is called the orthogonal projection of v onto U and is given by

ProjU(v) = 〈v, e1〉e1 + . . .+ 〈v, ek〉ek.

Likewise, the vector w ∈ U⊥ is called the orthogonal projection of v onto U⊥ and
is given by

ProjU⊥(v) = v − ProjU(v).

One can show that
dimV = dimU + dimU⊥.

This can be very helpful when determining the orthogonal complement of a subspace
U . Indeed, suppose you have managed to find dimV − dimU linearly independent
vectors that are all orthogonal to U . Then, these vectors will, in fact, form a basis for
U⊥. This property will be used in the next example.
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11.5 Example: Orthogonal projection in R3

Let R3 be endowed with the usual dot product, and let

U = span({(0, 1, 0), (−4
5
, 0, 3

5
)}), v = (1, 1, 1).

Find the orthogonal projections of v onto U and U⊥.
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11.6 Construction of orthonormal basis

It is often convenient to have an orthonormal basis for a given finite-dimensional inner
product space. The following algorithm turns a linearly independent set of vectors into
an orthonormal set of vectors with the same span as the original set. Applying the
algorithm to a basis thus turns the basis into an orthonormal basis. Hence:

Every finite-dimensional real inner product space has an orthonormal basis.

Let {v1, . . . ,vn} be a linearly independent set of vectors in the real inner product space
V . The corresponding Gram-Schmidt process is the following algorithm:
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11.7 Example: Orthonormal basis for P1(R)
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12 Least squares approximation

12.1 Least squares problem - minimising distance to a sub-
space

A recurring problem in linear algebra, and in its myriad of applications, is the following:

• Given a vector v in a real inner product space V , give the best approximation to
v in a finite-dimensional subspace U of V .

Question: What do we mean by “best approximation”?

Answer: Seek u ∈ U that minimises ||v−u||. Equivalently, find a vector in a subspace
(for example, corresponding to a point on a plane in R3), of minimal distance to a
given vector in the ambient vector space (in this example, corresponding to a point in
R3). Concretely, let v ∈ V . Then, the problem is to

find u ∈ U such that d(u,v) is as small as possible.

This problem is called the “least squares problem.”

Theorem (Best Approximation Theorem). If U is a finite-dimensional subspace of a
real inner product space V , and if v ∈ V, then ProjU(v) is the best approximation to
v from U in the sense that

||v − ProjU(v)|| < ||v − u|| ∀u ∈ U : u 6= ProjU(v).
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In practice, rather than work with minimising ||v−u||, we minimise ||v−u||2 (same
outcome, avoid square root). Then Best Approximation Theorem =⇒ ProjU(v) is
the best approximation
⇐⇒ u = ProjU(v) is the vector that minimises ||v − u||2.

How to find ProjU(v)?

Solution 1. Use Gram-Schmidt process to construct an orthonormal basis {e1, e2, · · · , en}
of U . Then

ProjU(v) = 〈v, e1〉e1 + . . .+ 〈v, en〉en.
Solution 2.

Let γ = {u1,u2, · · · ,un} be a basis of the subspace U . We seek coefficients
α1, α2, . . . αn that minimise ||v − (α1u1 + α2u2 + · · ·+ αnun)||2.

||v − (α1u1 + α2u2 + · · ·+ αnun)||2

=〈v − (α1u1 + α2u2 + · · ·+ αnun),v − (α1u1 + α2u2 + · · ·+ αnun)〉

=〈v,v〉 − 2α1〈v,u1〉 − 2α2〈v,u2〉 − · · · − 2αn〈v,un〉+
n∑
i=1

n∑
j=1

αiαj〈ui,uj〉

=E(α1, α2, . . . , αn).

E is the “error (real valued function).”
From MATH1052/MATH1072: we minimise E. Set ∇E = 0, which gives

∂E

∂αk
= −2〈v,uk〉+ 2

n∑
l=1

αl〈uk,ul〉 = 0.

This is n equations in n unknowns, which may be expressed in matrix form;


〈u1,u1〉 〈u1,u2〉 . . . 〈u1,un〉
〈u2,u1〉 〈u2,u2〉 . . . 〈u2,un〉

...
...

〈un,u1〉 〈un,u2〉 . . . 〈un,un〉




α1

α2
...
αn

 =


〈v,u1〉
〈v,u2〉

...
〈v,un〉

 .

Note: If γ is orthonormal =⇒ matrix on LHS= I (the identity matrix) =⇒ αi =
〈v,ui〉, which coincides with Solution 1, as expected.

12.2 Inconsistent linear systems

In applications, one is often faced with over-determined linear systems. For example,
we may have a bunch of data points that we have reasons to believe should fit on a
straight line. But real-life data points rarely match predictions exactly. The goal in
this section is to develop a method for obtaining the best fit or approximation of a
specified kind to a given set of data points.
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To this end, let A ∈ Mm,n(R) and b ∈ Mm,1(R). For m > n, the linear system
described by Ax = b is over-determined and does not in general have a solution.
However, we may be satisfied if we can find x̂ ∈ Mn,1(R) such that Ax̂ is as ‘close’
to b as possible. That is, we seek to minimise ||b − Ax|| for given A and b. For
computational reasons, one usually minimises ||b−Ax||2 instead. A solution x̂ to this
minimisation problem is referred to as a least squares solution.

First, let us recall the column space of the matrix A as

Col(A) = span({a1, . . . , an}),

where a1, . . . , an ∈Mm,1(R) are the columns of A. Since

a1 = A


1
0
...
0

 , a2 = A


0
1
...
0

 , . . . , an = A


0
0
...
1

 ,

we have

Col(A) = span
(
{A


1
0
...
0

 , A


0
1
...
0

 , . . . , A


0
0
...
1

}) = {A


x1

x2
...
xn

 |x1, x2, . . . , xn ∈ R}

= {Ax |x ∈Mn,1(R)}.

It follows that Ax̂ ∈ Col(A). We are thus in the situation described in Section 12.1.

Consequently, we know that
Ax̂ = ProjCol(A)(b),

but we are still faced with the task of disentangling x̂ from Ax̂. Note that, although
Ax̂ = ProjCol(A)(b) is uniquely given in terms of A and b, the ensuing result for x̂ need
not be.
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Solution 3. For the current special application, i.e. least squares solutions of linear
systems, we have a more direct (and simpler) method. In the following we describe
this method and give some examples.

12.3 Col(A)⊥ = N(AT )

The orthogonal complement of the column space of A is the null space of AT .
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12.4 Solving for x̂

Recall from Section 11.4 that v−ProjU(v) = ProjU⊥(v) ∈ U⊥ for any finite-dimensional
subspace U of V and v ∈ V . Since Ax̂ = ProjCol(A)(b), we thus have

b− Ax̂ ∈ Col(A)⊥.

Because Col(A)⊥ = N(AT ), it follows that AT (b− Ax̂) = 0, so

ATAx̂ = ATb.

Since A ∈ Mm,n(R) ⇒ ATA ∈ Mn,n(R), the equation ATAx̂ = ATb can always be
solved for x̂, for example by Gaussian elimination. However, the solution need not be
unique. Indeed, the solution is unique if and only if ATA is invertible, in which case

x̂ = (ATA)−1ATb.

A key to determining whether ATA is invertible is the following result:

{a1, . . . , an} is linearly independent ⇐⇒ ATA is invertible.

But how does that help? Well, recall that m > n so that A may be describing an
over-determined linear system. In fact, in case the linear system encodes experimental
or empirical data, m is likely to be much larger than n. The columns of A are then
very likely to be linearly independent, and ATA would indeed be invertible.
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12.5 Fitting a curve to data

Experiments yield data (assume xi distinct and exact)

(x1, y1), (x2, y2), · · · , (xn, yn)

which include measurement error. Theory may predict polynomial relation between x
and y. We seek a least squares polynomial function of best fit (e.g. least squares line
of best fit or regression line).

Example: Quadratic fit. Suppose some physical system is modeled by a quadratic
function p(t). Data in the form (t, p(t)) have been recorded as

(1, 5), (2, 2), (4, 7), (5, 10).

Find the least squares approximation for p(t).
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13 Least squares function approximation

Given a function f ∈ C[a, b], find the best approximation to f using only functions
from a specified subspace U of C[a, b].

Interpret “best possible” in the sense of least squares.

Consider g as an approximation to f .
At point x0 the error is |f(x0) − g(x0)|. For the entire interval, define error as∫ b

a
|f(x)− g(x)|dx.
This is area between curves.
An easier definition (and one more amenable to calculations) is the mean squared

error (MSE)

MSE =

∫ b

a

(f(x)− g(x))2 dx.

Recall the integral inner product on C[a, b];

〈p,q〉 =

∫ b

a

p(x)q(x) dx

=⇒ MSE = ||f − g||2 = 〈f − g, f − g〉 =

∫ b

a

(f(x)− g(x))2 dx.
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13.1 Example: sin(x)

Find the least squares approximation for sinx in the subspace of C[0, π] spanned by
{1, x, x2}. Use the inner product

〈p,q〉 =

∫ π

0

p(x)q(x) dx.
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13.2 Fourier coefficients

In C[0, 2π], the set

βn =
{

1√
2π

}
∪
{

1√
π

cos kx | k = 1, . . . , n
}
∪
{

1√
π

sin kx | k = 1, . . . , n
}
,

where n ∈ N0, is orthonormal with respect to the inner product

〈f ,g〉 =

∫ 2π

0

f(x)g(x)dx.
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It follows that βn is an orthonormal basis for the (2n+ 1)-dimensional subspace Wn =
span(βn) of C[0, 2π]. The orthogonal projection of f ∈ C[0, 2π] onto Wn is given by
ProjWn

(f). In the limit n → ∞, the corresponding approximation of f(x) yields the
Fourier series of f(x) over the interval [0, 2π]:

f(x) =
a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx),

where

ak =
1

π

∫ 2π

0

f(x) cos kx dx, bk =
1

π

∫ 2π

0

f(x) sin kx dx,

are the associated Fourier coefficients.
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14 Understanding determinants

By the end of this section, you should be able to answer the following questions:

• What is the motivation for the definition of the determinant of a 2× 2 matrix?

• What does the 2 × 2 determinant tell us about linear transformations in the
plane?

Recall from MATH1051/MATH1071 that a 2× 2 matrix can be viewed as a trans-
formation in the plane. For example, the equation(

1 1
0 3

)(
2
1

)
=

(
3
3

)
can be intepreted as in the following diagram.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

A matrix can be viewed as either transforming vectors or points in the plane. We
also consider what happens to a set of points under such a transformation. For example,
a curve, or a region in the plane.

It is also interesting to consider general features of linear transformations. There
are two fundamental properties of linear transformations:

1. The origin remains fixed under a linear transformation.

2. Straight lines map to straight lines under a linear transformation.
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Given the second property, we may consider how to quantify the amount by which
a linear transformation stretches or contracts a region in the plane by first consider the
image of a unit square.

14.1 The effect of a linear transformation on a grid

We start with a straightforward example: Describe the effect of the linear transforma-

tion A =

(
1 1
0 3

)
on the unit square S = {(x, y) | 0 ≤ x, y ≤ 1}.
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Now consider a grid of lines parallel to the x and y axes.

These grid lines remain parallel and evenly spaced under a linear transformation.
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14.2 The determinant

It follows that the effect of a linear transformation on any grid square, regardless of
the size, must be the same. It is then helpful to approximate any region in the x-y
plane by arbitrarily small grid squares and arrive at the same conclusion.

Under a linear transformation A, the area of any region in the x-y plane scales by
the same amount. This amount (up to a sign) is called the determinant of A, denoted
|A| or det(A). In the case

A =

(
a b
c d

)
⇒ det(A) = ad− bc.
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14.3 Sign of the determinant and orientation

For a linear transformation in the plane, A, if det(A) < 0, this implies that the region
has undergone a “flip” or change in orientation. This is made clear in the following
example.

Example: Compare the effect of A =

(
4 1
2 3

)
and B =

(
1 4
3 2

)
on the unit square

{(x, y) | 0 ≤ x, y ≤ 1}.

14.4 Further examples

Consider the effect on the unit square under the following linear transformations.

1.

(
0 0
0 0

)

2.

(
0 0
1 2

)

3.

(
1 0
2 0

)

4.

(
1 2
2 4

)
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15 Eigenvalues and eigenvectors

By the end of this section, you should be able to answer the following questions:

• How do you find the eigenvalues and eigenvectors of a given square matrix?

• What are some simple properties of eigenvalues and eigenvectors?

• Prove that the eigenvectors corresponding to distinct eigenvalues are linearly
independent.

A great deal of this section should be familiar to you. We start by recalling some
results on vector spaces associated with matrices.

15.1 Non-singular matrices

For n × n square matrix A, we have several conditions for the existence of A−1. The
the following statements are equivalent:
1. A is non-singular.
2. Axxx = 000 has only the trivial solution xxx = 000.
3. If U is a r.e.f. for A, then U has no row of all

zeros.
4. Axxx = bbb has a solution for every n-dimensional

column vector bbb.
5. det(A) 6= 0.
6. The columns of A are linearly independent.
7. The rows of A are linearly independent.
8. nullity(A) = 0.
9. rank(A) = n.
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15.2 Eigenvalues and eigenvectors

Let A be a square matrix. Then an eigenvector of A is a vector vvv 6= 000 such that

Avvv = λvvv,

for some scalar λ. We call λ the eigenvalue corresponding to vvv. If vvv is an eigenvector
of A, then so is tvvv for any scalar t 6= 0.

We have
Avvv = λvvv = λIvvv ⇒ (A− λI)vvv = 000.

Hence xxx = vvv is a non-trivial solution to the homogeneous system of equations (A −
λI)xxx = 000, and conversely, if there is a non-trivial solution then λ is an eigenvalue of A.
Thus:

λ is an eigenvalue of A ⇔ (A− λI)xxx = 000 has a non-trivial solution

⇔ A− λI is singular

⇔ det(A− λI) = 0.

For an n × n matrix A, det(A − λI) is a polynomial of degree n in λ, called the
characteristic polynomial of A. The equation det(A − λI) = 0 is the characteristic
equation of A.

Eigenvalues λ may be complex numbers, and the eigenvectors vvv may have complex
components, even for real matrices A.

To find the eigenvalues and eigenvectors, do the following:

1. Find the roots of the characteristic polynomial, det(A− λI) = 0. These are the
eigenvalues.

2. For each eigenvalue λ, find N(A− λI), known as the eigenspace associated to λ.
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15.2.1 Example

Find the eigenvalues and eigenvectors of A =

 −3 1 0
1 −2 1
0 1 −3

.
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15.3 Simple properties

For a square matrix A:

1. A and AT have the same eigenvalues.

2. A is singular if and only if λ = 0 is an eigenvalue of A.

3. If λ is an eigenvalue of A, then λ2 is an eigenvalue of A2, and 1/λ is an eigenvalue
of A−1 when A is non-singular.

4. If λ is an eigenvalue of A, then λ−m is an eigenvalue of A−mI, for any scalar
m.
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15.4 Eigenvectors corresponding to distinct eigenvalues are
linearly independent

If λ1, λ2, . . . , λk are distinct eigenvalues ofA, with corresponding eigenvectors v1,v2, . . . ,vk
(such that vi corresponds to λi), then the set of eigenvectors {v1,v2, . . . ,vk} is linearly
independent.
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16 Diagonalisation

By the end of this section, you should be able to answer the following questions:

• How do you find a matrix P which diagonalises a given matrix A?

• How do you determine if A is diagonalisable?

• What are two applications of diagonalisation?

A square matrix A is diagonalisable if there is a non-singular matrix P such that
P−1AP is a diagonal matrix. Here we consider the question: given a matrix, is it
diagonalisable? If so, how do we find P?

The secret to constructing such a P is to let the columns of P be the eigenvectors of
A. We immediately have that AP = PD, whereD is a diagonal matrix with eigenvalues
on the diagonal. We know from section 15.1 on page 111 that P is invertible if and
only if the columns of P are linearly independent. Hence, we have the following result:

The n × n matrix A is diagonalisable if and only if A has n linearly independent
eigenvectors.

Is the matrix A =

 −3 1 0
1 −2 1
0 1 −3

 diagonalisable?
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16.1 Similar matrices

Two matrices A and B are similar if there is a non-singular matrix P such that B =
P−1AP .

The statements “A is diagonalisable” and “A is similar to a diagonal matrix” are
equivalent.

16.1.1 Theorem (similar matrices)

Similar matrices have the same eigenvalues.
In fact, if B = P−1AP and vvv is an eigenvector of A corresponding to eigenvalue λ,

then P−1vvv is an eigenvector of B corresponding to eigenvalue λ. This is because

B(P−1vvv) = (P−1AP )P−1vvv

= P−1(Avvv)

= P−1(λvvv)

= λ(P−1vvv)

16.2 A closer look at the diagonal matrix

Let the matrix A be n × n with n linearly independent eigenvectors vvv1, . . . , vvvn corre-
sponding to eigenvalues λ1, . . . , λn. Let

P = (vvv1| . . . |vvvn)

be the n× n matrix whose columns are the eigenvectors. Then

P−1AP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ,

the diagonal matrix with the eigenvalues down the main diagonal. The important
point here is the order in which the eigenvalues appear. They correspond to the order
in which the associated eigenvectors appear in the columns of P .
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16.3 Diagonalisability

We know that an n × n matrix A is diagonalisable if and only if A has n linearly
independent eigenvectors.

Now say λ1, . . . , λm are distinct eigenvalues of A, with corresponding eigenvectors
vvv1, . . . , vvvm. Then we have also seen that vvv1, . . . , vvvm are linearly independent.

Hence if A is n× n with n distinct eigenvalues, then A is diagonalisable.
The question remains, if A has fewer than n distinct eigenvalues, how do we know

if A is diagonalisable?

16.3.1 Example

Let A =

 2 1 3
0 1 0
0 0 1

 and B =

 2 1 3
0 1 1
0 0 1

.

Easy to see the characteristic equation of both A and B is (2− λ)(1− λ)2 = 0, so
λ = 2, 1, 1.
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16.4 Algebraic and geometric multiplicity

If we are only interested in finding out whether or not a matrix is diagonalisable, then
we need to know the dimension of each eigenspace. There is one theorem (which we
will not prove!) that states:

If λi is an eigenvalue, then the dimension of the corresponding eigenspace cannot
be greater than the number of times (λ− λi) appears as a factor in the characteristic
polynomial.

We often use the following terminology:

• The geometric multiplicity of the eigenvalue λi is the dimension of the eigenspace
corresponding to λi.

• The algebraic multiplicity of the eigenvalue λi is the number of times (λ − λi)
appears as a factor in the characteristic polynomial.

The main result is the following:

A square matrix is diagonalisable if and only if the geometric and algebraic
multiplicities are equal for every eigenvalue.
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16.5 Applications of diagonalisability

16.5.1 Systems of differential equations

For a system of coupled differential equations which can be written in matrix form as

ẋxx = Axxx

(where xxx = (x1, . . . , xn)T , ẋxx = (ẋ1, . . . , ẋn)T ),
if A can be diagonalised, say P−1AP = D with D diagonal, then make the substitution
xxx = Pyyy. This yields

ẏyy = Dyyy

which is easily solved.
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16.5.2 Matrix powers

If A is diagonalisable, say P−1AP = D with D diagonal, then

An = PDnP−1.

This gives an easy way to calculate An.

16.5.3 Linear systems

What can we say about the linear system (corresponding to a square matrix A)

Axxx = bbb,

if we know how to diagonalise A?
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17 Orthogonal matrices

The goal of this section is to investigate orthogonal matrices and to see their relation-
ship with isometries, i.e. functions that preserve distance.

17.1 Transpose of a transition matrix

Using the inner product on M2,2(R) discussed in Section 8.5, we noted that

〈u,v〉 = [u]β · [v]β,

where β is the standard ordered basis for M2,2(R). This generalises to any finite-
dimensional real inner product space V with orthonormal basis β.

If β, β′ are orthonormal bases for V , we then have

[u]β · [v]β = 〈u,v〉 = [u]β′ · [v]β′ .
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Since the transition matrix Pβ→β′ relates the coordinate vectors as [u]β′ = Pβ→β′ [u]β,
it follows that

[u]β · [v]β = [u]β′ · [v]β′ = (Pβ→β′ [u]β) · (Pβ→β′ [v]β) = (Pβ→β′ [u]β)T (Pβ→β′ [v]β)

= ([u]β)T (Pβ→β′)TPβ→β′ [v]β = [u]β ·
(
(Pβ→β′)TPβ→β′ [v]β

)
.

Now, could it be that (Pβ→β′)TPβ→β′ is simply the identity matrix? It is! Since
transition matrices are invertible, this means that

(Pβ→β′)T = (Pβ→β′)−1.
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17.2 Orthogonal matrices

A square matrix Q with real entries is called orthogonal if it is invertible and

Q−1 = QT ,

that is, if QTQ = QQT = I. As shown in Section 17.1, transition matrices between
orthonormal bases are examples of orthogonal matrices. Special cases are

Qθ =

(
cos θ − sin θ
sin θ cos θ

)
, Q̃θ =

(
cos θ sin θ
sin θ − cos θ

)
, θ ∈ R.

Orthogonal matrices have their name because of the following property. Let (v1 | . . . |vn)
denote an n× n matrix with column vectors v1, . . . ,vn. Then,

(v1 | . . . |vn) is orthogonal ⇐⇒ {v1, . . . ,vn} is an orthonormal set.
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17.3 Isometries

An isometry of Rn is a function h : Rn → Rn that preserves distances:

||h(u)− h(v)|| = ||u− v||, ∀u,v ∈ Rn.

As one can show, every isometry of Rn can be uniquely written as a composition of
a translation and an isometry that fixes 0 (the origin of Rn). Examples of isometries
that fix 0 are rotations and reflections. Concretely, the matrix Qθ above generates
rotations by θ about the origin in the plane R2, while Q̂θ generates reflections about
the line through the origin, turned the angle θ/2.

For a function h : Rn → Rn, the following are equivalent:

(i) h is an isometry and h(0) = 0;

(ii) h(u) · h(v) = u · v, ∀u,v ∈ Rn.
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17.4 Orthogonal matrices generate isometries

For Q ∈Mn,n(R), the following are equivalent:

(i) Q is orthogonal;

(ii) ||Qv|| = ||v||, ∀v ∈ Rn;

(iii) (Qu) · (Qv) = u · v, ∀u,v ∈ Rn.

Thus, isometries of Rn that fix 0 are generated by orthogonal matrices, and vice versa.
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18 Orthogonal diagonalisation

By the end of this section, you should be able to answer the following questions:

• What is a symmetric matrix?

• How do you diagonalise symmetric matrices?

Given an n × n matrix A, we call A orthogonally diagonalisable if there exists an
orthogonal matrix P such that P−1AP = P TAP is diagonal. To understand this, we
first need to know what is meant by an orthogonal matrix.

18.1 Orthogonal matrices

Recall from the previous chapter that an orthogonal matrix is a real square matrix Q
such that the columns of Q are mutually orthogonal unit vectors with respect to the
Euclidean inner product (i.e. vvvi · vvvj = 0 if i 6= j, and ||vvvi|| = 1).

An orthogonal matrix is then a real square matrix Q such that Q−1 = QT . An
immediate consequence of this is that det(Q) = ±1.

18.2 Symmetric matrices

A matrix A is symmetric if and only if A = AT . Symmetric matrices are easy to
identify due to their “mirror symmetry” about the main diagonal. For example, we

can tell by inspection that A =

 −3 1 0
1 −2 1
0 1 −3

 is symmetric.
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18.2.1 If A is real symmetric, then the eigenvectors corresponding to dif-
ferent eigenvalues are orthogonal.

Proof:
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18.2.2 Real symmetric matrices are orthogonally diagonalisable

It is straightforward to show that if a matrix is orthogonally diagonalisable, then it is
symmetric:

In fact, the converse is also true (although difficult to prove), giving us the amazing
result:

An n×n real matrix is orthogonally diagonalisable if and only if it symmetric.

The significance of this is that a symmetric matrix is always diagonalisable by an
orthogonal matrix.

18.2.3 Eigenvectors and eigenvalues

Here we state two results about any symmetric matrix A without proof:

(1) All the eigenvalues of A are real;

(2) A has n linearly independent eigenvectors.
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18.2.4 Example

Let A =

 −3 1 0
1 −2 1
0 1 −3

 (see previous examples).

We already know the eigenvalues are −3,−1,−4 with corresponding eigenvectors

vvv1 =

 1
0
−1

 , vvv2 =

 1
2
1

 , vvv3 =

 1
−1

1

 .

Note that A is real symmetric, so vvv1, vvv2 and vvv3 should be pairwise orthogonal.

134



Notes.

135



19 Quadratic forms

By the end of this section, you should be able to answer the following questions:

• What is a quadratic form?

• How do you diagonalise quadratic forms?

• How can you use diagonalisation of two variable quadratic forms to identify conic
sections?

• What are quadric surfaces?

This section presents a novel application of orthogonal diagonalisation as a way of
identifying conic sections. We also mention the generalisation to three dimensions and
how, in principle, we could identify quadric surfaces, although the details in this case
can become quite messy.

The majority of this section is based on the section on quadratic forms in the
MATH2001 recommended text “Elementary Linear Algebra (Applications Version)”
by Anton and Rorres, pages 479–502.

19.1 Definition

Consider n real variables x1, x2, . . . , xn. A function of the form
n∑
i=1

n∑
j=1

aijxixj is called

a quadratic form, where the aij are real constants.
For example, the most general quadratic form in the variables x and y is

Q(x, y) = ax2 + by2 + cxy.

In the three variables x, y and z, the most general quadratic form is

Q(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz,

where in both cases a, b, c, d, e, f are all constants. It is possible to express quadratic
forms in n variables as a matrix product vTAv, where v is a vector with the n variables
as entries and A is a symmetric matrix.

The two variable quadratic form above can be expressed as

Q(x, y) =
(
x y

)( a c/2
c/2 b

)(
x
y

)
.
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The three variable quadratic form given above can be written as

Q(x, y, z) =
(
x y z

) a d/2 e/2
d/2 b f/2
e/2 f/2 c

 x
y
z

 .

As an exercise, trying verifying this by expanding out both expressions. Observe that
in both cases the diagonal entries of the matrix are the coefficients of the square terms
and the off-diagonal entries in the matrix are the coefficients of the cross-terms.

19.1.1 Give the matrix representation of the quadratic form 2x2 +6xy−7y2.

137



19.2 Diagonalising quadratic forms

Since we know we can always orthogonally diagonalise a symmetric matrix, if we do
this to the symmetric matrix in the matrix representation of the quadratic form, we
can reduce the quadratic form to a sum of square terms.

We shall demonstrate this by example:

19.2.1 Express −3x2 − 2y2 − 3z2 + 2xy + 2yz exclusively as a sum of square
terms.
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19.3 Quadratic equations and conic sections

We now restrict our attention to two dimensions, by investigating quadratic equations,
which are equations of the form

ax2 + by2 + cxy + dx+ ey + f = 0,

where a, b, c, d, e, f ∈ R.
Graphs of quadratic equations are known as conic sections, because they can be

realised as the intersection of a plane and a double cone in three dimensions. The most
interesting of these are the so-called non-degenerate conic sections1. A non-degenerate
conic section is in standard position relative to the coordinate axes if its equation can
be expressed in one of the following forms:

• x2

k2
+
y2

l2
= 1; k, l > 0,

• x2

k2
− y2

l2
= 1 or

y2

l2
− x2

k2
= 1; k, l > 0,

• x2 = ky or y2 = kx; k 6= 0.

The key observation here is that conic sections in standard form have no cross-terms.
Given a quadratic equation with cross-terms in the associated quadratic form, we can
change variables to remove the cross-terms by orthogonal diagonalisation. Due to the
defining property of rotation matrices, an orthogonal matrix P always corresponds to
a rotation, provided det(P ) = 1 (not −1). Hence, we have the following.

Changing variables by orthogonal diagonalisation corresponds to a rotation of
the coordinate axes. If P is the orthogonal (rotation) matrix, then the new
coordinates (u, v) can be expressed in terms of the old coordinates (x, y) as(

u
v

)
= P T

(
x
y

)
.

Another important observation is that there is never an occurance of x2 and x in
the standard form (or y2 and y). As a general rule, given a quadratic equation (even
after changing variables from orthogonal diagonalisation), if we have terms such as x2

and x (or similar terms involving new variables) we can complete the square to be left
with only a square term. We have the following.

Completing the square in a quadratic equation corresponds to translating (or
shifting) the coordinate axes.

1There are also degenerate (points, lines) and imaginary (without real graphs) conic sections.
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In summary, to identify a quadratic equation as a conic section, we follow these
steps:

1. Write the quadratic equation

ax2 + by2 + cxy + dx+ ey + f = 0

in the matrix form xTAx +Kx + f = 0, where x =

(
x
y

)
and K =

(
d e

)
.

2. Find a matrix P that orthogonally diagonalises A, so A = PDP T . You may need
to swap columns of P to ensure that det(P ) = 1 (and hence corresponds to a
rotation).

3. Define new variables u, v such that v =

(
u
v

)
= P Tx ⇒ x = Pv.

4. Substitute v into the matrix form of the equation, giving

vTDv +KPv + f = 0.

5. Complete the square if required. This is necessary if u2 and u are both present
(or v2 and v). This defines a new set of variables s, t by translating u, v. The
translations will be of the form s = αu+ β, t = γv + δ.

6. If it is a non-degenerate conic, the final equation in s and t should be a conic
section in standard form.

19.3.1 Describe the conic whose equation is x2 + y2 + 2xy − 3x− 5y + 4 = 0.
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19.4 Further reading: quadric surfaces

It turns out we can similarly use orthogonal diagonalisation of 3×3 matrices to simplify
and ultimately identify surfaces whose general equation is of the form

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + gx+ hy + iz + j = 0,

where a, b, c, d, e, f are never all zero. Note that we can rewrite the equation in matrix
form as

(
x y z

) a d e
d b f
e f c

 x
y
z

+
(
g h i

) x
y
z

+ j = 0.

If we then orthogonally diagonalise the 3 × 3 matrix, then complete any squares that
are left over, we end up being able to identify the surface as one of the following forms:

• x2

l2
+
y2

m2
+
z2

n2
= 1,

• z2 =
x2

l2
+
y2

m2
,

• x2

l2
+
y2

m2
− z2

n2
= 1,

• z =
x2

l2
+
y2

m2
,

• z2

l2
− x2

m2
− y2

n2
= 1,

• z =
y2

m2
− x2

l2
.

As in the two dimensional case, the orthogonal diagonalisation has the effect of
rotating the axes, provided the orthogonal matrix P has detP = 1, which we can
choose by carefully ordering the columns. Completing the square has the effect of
shifting the axes.

You should be aware that these techniques are available in order to simplify and
identify algebraic expressions representing surfaces. The three dimensional case can
often become quite complicated. You will not be expected to identify quadric surfaces
in an exam.
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20 Complex matrices

By the end of this section, you should be able to answer the following questions:

• What are unitary, Hermitian and normal matrices?

• Given a complex matrix, determine if it can be unitarily diagonalised, and if so,
diagonalise it.

Unitary and Hermitian matrices are complex analogues of orthogonal (A−1 = AT )
and symmetric (A = AT ) real matrices respectively.

In order to define these matrices, we need the following.

20.1 Definition (conjugate transpose)

Let A be a complex matrix. The conjugate transpose of A, denoted A∗, is given by
(A)T , where A is the matrix whose entries are complex conjugates of the corresponding
entries of A.

Note that if A is real, A∗ = AT .

20.1.1 Example

Let A =

(
3 + 7i 0

2i 4− i

)
. Write down the conjugate transpose of A.
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20.2 Unitary matrices

A complex matrix A is said to be unitary if A−1 = A∗. Compare this definition with
that of real orthogonal matrices.

Recall that a real matrix is orthogonal if and only if its columns form an orthonormal
set of vectors. For complex matrices, this property characterises unitary matrices. In
this case however, we must use the complex inner product.

20.3 Complex inner product

Recall that in Rn the inner (or dot) product of two vectors

u =


u1

u2
...
un

 , v =


v1

v2
...
vn


is given by

u · v = u1v1 + u2v2 + · · ·+ unvn

and the length (a real number!) of u by

||u|| =
√
u · u =

√
u2

1 + u2
2 + · · ·+ u2

n.

These definitions are unsuitable for vectors in Cn.
To demonstrate, consider the vector u = (i, 1) in C2. Using the above expression

for length, we would obtain ||u|| =
√
i2 + 1 = 0, so u would be a non-zero vector with

length 0.
Instead, we introduce the complex inner product

u · v = u1v1 + u2v2 + · · ·+ unvn,

where as usual vi denotes the complex conjugate of vi. In matrix notation, we can
write this as u ·v = v∗u. Note the length of a complex vector is always a real number.

So now we understand what is meant by the following statement: Columns of a
unitary matrix form an orthonormal set with respect to the complex inner product.
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20.4 Hermitian (self-adjoint) matrices

A complex matrix A is called Hermitian (or self-adjoint) if A = A∗.
As with symmetric matrices, we can recognise a Hermitian matrix by inspection.

See if you can see the pattern in the following 2×2, 3×3 and 4×4 Hermitian matrices.

(
a11 a12 + ib12

a12 − ib12 a22

)
,

 a11 a12 + ib12 a13 + ib13

a12 − ib12 a22 a23 + ib23

a13 − ib13 a23 − ib23 a33

 ,


a11 a12 + ib12 a13 + ib13 a14 + ib14

a12 − ib12 a22 a23 + ib23 a24 + ib24

a13 − ib13 a23 − ib23 a33 a34 + ib34

a14 − ib14 a24 − ib24 a34 − ib34 a44

 ,

where aij, bij ∈ R. Note in particular that the diagonal entries are real numbers.
One of the most significant results on Hermitian matrices is that their eigenvalues

are real.

20.4.1 Proof that Hermitian matrices have real eigenvalues

Let v ∈ Cn be an eigenvector of the Hermitian matrix A, with corresponding eigenvalue
λ. In other words,

Av = λv. (12)

In what follows, we use the fact that (AB)∗ = B∗A∗ which holds since the same is true
for matrix transposition.

We multiply (12) from the left by v∗ (treat v as an n×1 complex matrix) to obtain

v∗Av = v∗(λv) = λ(v∗v). (13)

Also note that
(v∗Av)∗ = v∗A∗(v∗)∗ = v∗Av.

In other words, v∗Av is also Hermitian. Since it evaluates to be a 1 × 1 matrix, and
all Hermitian matrices have real numbers on their diagonal, this means that v∗Av is a
real number.

The quantity v∗v is precisely the complex inner product of v with itself as we have
already seen, which is also a real number.
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Therefore equation (13) is of the form

x = λy, x, y ∈ R,

from which we must conclude that λ is real.
One consequence of this result is that a real symmetric matrix has real eigenvalues,

since every real symetric matrix is Hermitian. This result was stated on page 133 but
not proved.

20.5 Unitary diagonalisation

We have seen that real symmetric matrices are orthogonally diagonalisable. There is
an analagous concept for complex matrices.

A square matrix A with complex entries is said to be unitarily diagonalisable if
there is a unitary matrix P such that P ∗AP is diagonal.

It is natural to consider which matrices are unitarily diagonalisable. The answer
lies in a more general class of matrix.

20.6 Normal matrices

A square complex matrix is called normal if it commutes with its own conjugate trans-
pose, ie, if AA∗ = A∗A.

Normal matrices are generally more difficult to identify by inspection. However, we
have some classes of matrices which are normal:

• unitary,

• Hermitian,

• real skew-symmetric (satisfying AT = −A),

• any diagonal matrix,

• others?

We make a note that real normal 2 × 2 matrices are either symmetric or of the form(
a b
−b a

)
(which include the skew-symmetric examples).

A class of matrix which is not generally normal is the class of complex symmetric
matrices.
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20.6.1 Example

Classify the matrix A =

(
1 1 + i

1 + i −i

)
.
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20.7 Normal = unitarily diagonalisable

The main result we have is completely analagous to the real case of orthogonal diago-
nalisation and symmetric matrices on page 133. We will not prove this result.

An n× n complex matrix is unitarily diagonalisable if and only if it normal.

20.7.1 Example

If possible, diagonalise the matrix

(
6 2 + 2i

2− 2i 4

)
.
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21 Multivariable Taylor series

By the end of this section you should be able to write down Taylor series of smooth,
scalar-valued functions of n variables.

Let the function f : R → R be infinitely differentiable at a ∈ R. Then, the Taylor
series of f(x) is the power series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + . . . .

A common reason for calculating the Taylor series of a function about a point x = a
is that its partial sums provide (polynomial) approximations to the function near the
point a. Here, we want to understand how this extends to functions of more than one
variable.

Before we continue, it is recalled that Taylor series need not be convergent, and
even if the Taylor series of f(x) does converge, its limit need not equal f(x) (in which
case f is known as non-analytic). To accommodate these situations, we may write

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + . . . .

21.1 Hessian matrix

For n ∈ N, let D ⊆ Rn and f : D → R such that all second-order partial derivatives of
f ,

fxixj =
∂2f

∂xi∂xj
, i, j = 1, . . . , n,

are continuous on D. The corresponding Hessian is then defined as the n× n matrix

H =


fx1x1 · · · fx1xn

...
...

fxnx1 · · · fxnxn

 .

According to Clairaut’s theorem, fxixj = fxjxi for all i, j = 1, . . . , n, so HT = H,
meaning that H is a symmetric matrix. To specify the dependence on f and x =
(x1, . . . , xn), one occasionally writes H(f)(x) or Hf (x).

21.2 Example: H of f(x, y) = x3y + 2y at (1, 2)
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21.3 Taylor series of f(x, y)

Let D ⊆ R2 and f : D → R such that f and all its (higher-order) partial derivatives are
continuous on D. Such a function is often called smooth. Here, we will examine the
behaviour of f near (x, y) = (a, b) by reducing the problem to a related one-variable
problem we know how to handle.

Let v = (h, k) 6= (0, 0) be small enough such that (a+ht, b+kt) ∈ D for t ∈ [−1, 1].
The function

F (t) = f(a+ ht, b+ kt), t ∈ [−1, 1],

then describes how f(x, y) behaves along the line parameterised as

x(t) = a+ ht, y(t) = b+ kt.

Understanding this behaviour near t = 0 will give us insight into how f behaves near
(x, y) = (a, b). Geometrically, we can think of it as follows:

Algebraically, we have the following:
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Up to higher-order terms in t, we thus have

f(a+ ht, b+ kt) ≈ f(a, b) +
[
fx(a, b)h+ fy(a, b)k)

]
t

+
[
fxx(a, b)h

2 + 2fxy(a, b)hk + fyy(a, b)k
2
]t2

2
+ . . . .

Since (x, y) = (a + ht, b + kt) implies that ht = x − a and kt = y − b, we have
h2t2 = (x− a)2, hkt2 = (x− a)(y − b) and k2t2 = (y − b)2, so

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2

[
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2

]
+ . . . .

Terms corresponding to higher powers of t involve factors of the form (x− a)p(y− b)q,
where p+ q > 2, p, q ∈ N.

Recalling the notion of quadratic forms from the lecture workbook, we can rewrite
the first few terms of the Taylor series as follows:

Setting

x =

(
x
y

)
, x0 =

(
a
b

)
,

we have (
fx(a, b)

fy(a, b)

)
= ∇f(x0),

(
fxx(a, b) fxy(a, b)

fyx(a, b) fyy(a, b)

)
= Hf (x0).

This allows us to write the first few terms of the Taylor series in the compact form

f(x) ≈ f(x0) + (∇f(x0))T (x− x0) + 1
2
(x− x0)THf (x0)(x− x0) + . . . .

Its vectorial expression indicates quite clearly how it extends to higher dimensions.
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21.4 Example: f(x, y) = sin(x−y2)√
y+1

about (0, 0)

21.5 Taylor series in any dimension

Let f be a smooth scalar-valued function on D ⊆ Rn, and let h ∈ Rn such that
x + h t ∈ D for t ∈ [−1, 1]. Then, the Taylor series of f(x + h) about x is

f(x + h) ≈
∞∑
`=0

1

`!
(h · ∇)`f(x) = f(x) + h · ∇f(x) + 1

2
(h · ∇)2f(x) + . . . .
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22 Critical points in n-dimensions

This chapter brings together a great deal of what we have studied so far in this course.
The goal is to be able to classify critical points of functions of any number of variables.

Recall Taylor series of a smooth function f in n variables about a point x = x0 is
given by;

f(x) =f(x0) + (∇f(x0))T (x− x0) +
1

2
(x− x0)TH(x0)(x− x0)

+ 〈 higher order terms〉,

where x =


x1

x2
...
xn

 , H(x0) =


∂2f

∂x1∂x1
(x0) ∂2f

∂x1∂x2
(x0) . . . ∂2f

∂x1∂xn
(x0)

∂2f
∂x2∂x1

(x0) ∂2f
∂x2∂x2

(x0) . . . ∂2f
∂x2∂xn

(x0)
...

...
...

∂2f
∂xn∂x1

(x0) ∂2f
∂xn∂x2

(x0) . . . ∂2f
∂xn∂xn

(x0)

 = H(x0)T

i.e. H(x0) is a real symmetric matrix.

22.1 Classification of critical points in n dimensions

In the following, let f : Rn −→ R.
Definition 1. A point x0 is said to be a critical point if ∇f(x0) = 0 or ∇f(x0) is
undefined.

Definition 2. A critical point x0 satisfying ∇f(x0) = 0 is a local maximum (local
minimum) if there exists some ε > 0 such that f(x0) ≥ f(x) (f(x0) ≤ f(x)) for all x
such that ||x− x0|| < ε.

Definition 3. A critical point x0 satisfying ∇f(x0) = 0 is a saddle point if it is neither
a local maximum nor a local minimum.
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22.2 Example: In 2d.

22.3 Critical points by Taylor series

In MATH1052: We used the“Second derivative test” for functions of two variables.

In MATH2001/7000: We consider a variant of this test that generalises easily to higher
dimensions.

Let x0 be a critical point satisfying ∇f(x0) = 0
=⇒ Taylor series about x0 is

f(x) = f(x0) +
1

2
(x− x0)TH(x0)(x− x0) + 〈 higher order terms 〉.

Without loss of generality, we take x0 = 0 (i.e. by shifting/translating variables if
necessary).

We have,

f(x) = f(0) +
1

2
xTHx + 〈 higher order terms 〉.

Here H = H(0). Thus, the behaviour about 0 (i.e the critical point) depends on
this second order term.
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Observe that H is real symmetric =⇒ H is orthogonally diagonalisable, i.e. there
exists an orthogonal matrix P such that P THP = D with some diagonal matrix D.

It follows that
xTHx = (xTP )D(P Tx) = yTDy.

(i.e. diagonalisation suggests set P Tx = y).
The critical point is still at y = 0, because P T0 = 0.
Let F denote the function f expressed in this new coordinate system i.e. F (y) =

f(x(y)).

=⇒ F (y) =f(0) +
1

2
yTDy + 〈 higher order terms 〉

=f(0) +
1

2

(
λ1y

2
1 + λ2y

2
2 + · · ·+ λny

2
n

)
+ 〈 higher order terms 〉,

where y =


y1

y2
...
yn

 .
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There are four cases to consider:

22.4 Example: Q = ax2 + bxy + cy2
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23 Introduction to double integrals, volume below

a surface

By the end of this section, you should be able to answer the following questions:

• What is the definition of volume below a surface?

• What is the definition of a double integral?

• How are the two related?

• What is an iterated integral?

Recall that if y = f(x), the area under the curve over the interval I = [a, b] is∫
I

f(x)dx = lim
n∑
i=1

f(x∗i )(xi − xi−1)

where x∗i ∈ [xi, xi−1].

23.1 Double integrals

Suppose we have a surface z = f(x, y) above a planar region R in the x-y plane.

y

z

x

R

z=f(x,y)

Figure 10: What is the volume V under the surface?

Before moving onto general regions, we start by considering the case where R is a
rectangle. That is,

R = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}.
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Start by dividing R into subrectangles by dividing the interval [a, b] into m subin-

tervals [xi−1, xi], each of width ∆x =
b− a
m

and [c, d] into n subintervals [yj−1, yj] of

equal width ∆y =
d− c
n

.

Combining these gives a rectangular grid Rij with subrectangles each of area ∆A =
∆x∆y.

In each subrectangle take any point Pij with co-ordinates (x∗ij, y
∗
ij).

The volume of the box with base the rectangle ∆A and height the value of the
function f(x, y) at the point Pij (so the box touches the surface at a point directly
above Pij - see figure 11) is

Vij = f(x∗ij, y
∗
ij)∆A.

Then for all the subrectangles we have an approximation to the required volume V :

V ≈
m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A,

the double Riemann sum.
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y

z

x P  = (x  , y  )ij ij ij
* *

z  = f(x  , y  )ij ij
***

Figure 11: The rectangular box whose volume is z∗∆A.

Let ∆x→ 0 and ∆y → 0, ie m→∞ and n→∞, then we define the volume to be

V = lim
m→∞

lim
n→∞

m∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A,

if the limits exist and we write this as
x

R

f(x, y)dA.

We call f integrable if the limits exist. Note that every continuous function is inte-
grable.

23.2 Properties of the double integral

(i)
x

R

(f ± g)dA =
x

R

fdA±
x

R

gdA

(ii)
x

R

cfdA = c
x

R

fdA

(iii)
x

R

fdA =
x

R1

fdA+
x

R2

fdA

(iv) If f(x, y) ≥ g(x, y) for all (x, y) ∈ R then

x

R

fdA ≥
x

R

gdA
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23.3 Iterated integrals

We define

∫ d

c

f(x, y)dy to mean that x is fixed andf(x, y) is integrated with respect

to y from y = c to y = d. So

A(x) =

∫ d

c

f(x, y)dy

is a function of x only.
If we now integrate A(x) with respect to x from x = a to x = b we have∫ b

a

A(x)dx =

∫ b

a

[∫ d

c

f(x, y)dy

]
dx

=

∫ b

a

∫ d

c

f(x, y) dy dx

This is called an iterated integral.

23.3.1 Example: evaluate

∫ 2

0

∫ 3

1

x2y dy dx
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Now try integrating the other way around:

23.3.2 Example: evaluate

∫ 3

1

∫ 2

0

x2y dx dy

Figure 12: We have just calculated the volume of the solid outlined above.

166



Notes.

167



24 Fubini’s theorem, volume by slabs

By the end of this section, you should be able to answer the following questions:

• What is Fubini’s theorem?

• How is the double integral related to the iterated integral?

• How do you estimate the volume below a surface using slabs?

24.1 Fubini’s theorem

If f(x, y) is integrable on the rectangle

R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d} ,

then

x

R

f(x, y)dA =

∫ b

a

∫ d

c

f(x, y) dy dx

=

∫ d

c

∫ b

a

f(x, y) dx dy

24.2 Example: evaluate
x

R

(x2 + y2)dA where

R = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ 1}
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Figure 13: A representation of the volume in example 24.2.
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24.3 Interpreting Fubini’s theorem in terms of volume

Fubini’s theorem is the key result that tells us how to evaluate a double integral. We
can see the relation between the iterated integral and the double integral by considering
an alternative way of calculating the volume below a surface.

Suppose we want to find the volume below the surface z = x2y above the square
region 0 ≤ x ≤ 8 and 0 ≤ y ≤ 4.

A natural way to solve this problem is to break the region up into slabs of equal
depth ∆y = yj+1 − yj located at yj, and add up the volume of the slabs

V ≈
∑
j

∆V,

where ∆V the volume of the jth slab. Figure 14 below shows two ways of doing this
using four slabs in each case. The left diagram follows the method outlined here, taking
slabs of thickness ∆y.

Figure 14: Two ways of approximating the volume under z = x2y using four slabs.

If the slab is very thin (i.e. ∆y � 1) then the volume of each slab is

∆V ≈ Area of slab × Depth = C(yj)∆y.

Here C(yj) is the area of the slab at the location yj (and the result will depend on yj!).
From one-dimensional calculus we know exactly that

C(yj) =

∫ 8

0

f(x, yj)dx yj constant.
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It is easy to compute this as a regular integral since yj does not vary with x. Putting
all this together

V ≈
∑
j

∆Vj ≈
∑
j

C(yj)∆y.

As the slabs become thinner and thinner (∆y → 0) the approximation becomes more
accurate and we can replace the summation by an integral2

V =

∫ 4

0

C(y)dy =

∫ 4

0

(∫ 8

0

f(x, y)dx

)
dy

Note that the y is held constant in the inner integral.
A similar argument can be applied by considering slabs of depth ∆x, located at xj.

In other words, take slabs that are parallel to the y-z plane.

24.4 Example: find the volume of the solid bounded by the
elliptic paraboloid x2 + 2y2 + z = 16, the planes x = 2 and
y = 2, and the three coordinate planes.

2Recall that is in fact the definition of an integral
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Figure 15: The volume of the solid of example 24.4 is below the surface z = 16−x2−2y2

and above the x-y plane as shown.
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24.5 Special case when f(x, y) = g(x)h(y).

In this case we can separate the integral as follows.

x

R

f(x, y)dA =

∫ d

c

∫ b

a

g(x)h(y) dx dy

=

∫ b

a

g(x)dx

∫ d

c

h(y)dy

24.5.1 Example:
x

R

sinx cos y dA where R = [0, π
2
]× [0, π

2
]

Figure 16: The volume calculated in example 24.5.1 is outlined above.
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25 Integrals over general regions

By the end of this section, you should be able to answer the following questions:

• How can you identify type I and II regions?

• How do you evaluate a double integral over type I and II regions?

• How can you evaluate a double integral over a more general region comprising
finitely many type I and II regions?

• What is meant by net volume below a surface?

To find the double integral over a general region D instead of just a rectangle we
consider a rectangle which encloses D and define

F (x, y) =

{
f(x, y), if (x, y) ∈ D

0, if (x, y) ∈ R but /∈ D

then x

D

f(x, y)dA =
x

R

F (x, y)dA

and we can proceed as before. It is possible to show that F is integrable if the boundary
of D is bounded by a finite number of smooth curves of finite length. Note that F may
still be discontinuous at the boundary of D.
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25.1 Type I regions

A plane region D is of type I if it lies between the graph of two continuous functions
of x. That is D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}.

2

1

D

g  (x)

g  (x)

ba
x

y

Figure 17: Type I regions are generally bounded by two constant values of x and two
functions of x.

In practice, to evaluate
x

D

f(x, y)dA where D is a region of type I we have

x

D

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx.

y

x

g  (x)

g  (x)

1

2

D

2

1

D

g  (x)

g  (x)

x

y

(a) (b)

Figure 18: Some more examples of type I regions.
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25.1.1 Example: find
x

D

(4x+ 10y)dA where D is the region between the

parabola y = x2 and the line y = x+ 2.

Figure 19: The volume of example 25.1.1 is outlined above.
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25.2 Type II regions

2

1

h  (y)

h  (y)

d

c

D

x

y

Figure 20: Type II regions are generally bounded by two constant values of y and two
functions of y.

A plane region is of type II if it can be expressed by

D = {(x, y)|c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}.

In practice, to evaluate
x

D

f(x, y)dA where D is a region of type II we have

x

D

f(x, y)dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy.

y

x

h  (y) h  (y)1 2
D

D
21 h  (y)h  (y)

x

y

(a) (b)

Figure 21: Some more examples of type II regions.
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25.2.1 Example: evaluate
x

D

xy dA where D is the region bounded by the

line y = x− 1 and the parabola y2 = 2x+ 6.

Figure 22: The volume of example 25.2.1 is outlined above. Note carefully that the
surface is above the x-y plane only in the quadrants where x, y > 0 and x, y < 0. For
x and y values in the other two quadrants, the surface is below the x-y plane. Hence
in this example we are calculating the “net volume” lying above the x-y plane.
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y = −1

x = 1

x = −1

y

x
D

2x = y

2y = x  +1

25.3 Express D as a union of regions of type I or type II

and expand the integral
x

D

f(x, y) dA, for some integrable

function f .
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26 Interchanging order of integration

By the end of this section, you should be able to answer the following questions:

• How do you change the order of integration in a double integral?

• when might it be necessary to change the order of integration in a double integral?

It is often possible to represent a type I region as a union of type II regions, or a
type II region as a union of type I regions. Why would we want to do that? In some
cases, it may only be possible to integrate a function one way but not the other. In
this section, we investigate this idea more closely.

26.1 Find the volume under the paraboloid z = x2 + y2 above
the region D, where D is bounded by y = x2 and y = 2x.
Do the problem twice, first by taking D to be a type I
region, then by taking D to be type II.
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Figure 23: This volume can be calculated by treating the region in the x-y plane as
either type I or II as seen in example 26.1.
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In the following example, we see how it is sometimes necessary to change the order
of integration in order to evaluate the integral.

26.2 Example: Find

∫ 1

0

∫ 1

x

sin(y2) dy dx

Figure 24: The volume described in example 26.2.
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27 Review of applications: volume, area

Main points:

• This section is a review of applications of the double integral such as calculating
net volume and area in the plane.

• By this stage you should be comfortable with using a double integral to calculate
the net volume below a surface.

• You should know how to find the area of a general region in the plane.

When the regions are more difficult, it is a good idea to draw two diagrams - the
3-D diagram with the x-y-z axes and the 2-D one of the region in the x-y plane.
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27.1 Example: Find the volume of the tetrahedron bounded
by the planes x+ 2y + z = 2, x = 2y, x = 0 and z = 0.

Figure 25: You should be able to reproduce a diagram like this one as an aid to
determining the bounds of integration.
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27.2 Area

Note that if we take f(x, y) = 1, we have
x

D

1 dA = area of the region D.
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27.3 Find the area enclosed by the ellipse
x2

a2
+
y2

b2
= 1

a−a

b

−b
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28 Double integrals in polar coordinates

By the end of this section, you should be able to answer the following questions:

• What is the relationship between polar coordinates and rectangular coordinates?

• How do you transform a double integral in rectangular coordinates into one in
terms of polar coordinates?

• What is the Jacobian of the transformation?

For annular regions with circular symmetry, rectangular coordinates are difficult.
It can be more convenient to use polar coordinates.

The following diagram explains the relationship between the polar variables r, θ and
the usual rectangular ones x, y.

(x,y)

θ

r

θ=0, 2π

θ=π/2

θ=π, −π

θ=3π/2, −π/2

For polar coordinates, we have

x = r cos θ, y = r sin θ.
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Consider the volume of a solid beneath a surface z = f(x, y) and above a circular
region in the x-y plane.

We divide the region into a polar grid as in the following diagram:

0 1 2 3 4 5
0

1

2

3

4

5

X

Y

•  P

We first approximate the area of each polar rectangle as a regular rectangle. We
do this as follows. Choose a point P inside each polar rectangle in the polar grid. Let
P = (x∗, y∗) or in polar coordinates P = (r∗, θ∗), where

x∗ = r∗ cos θ∗, y∗ = r∗ sin θ∗.

The area of the polar rectangle containing P can be approximated as r∗∆θ∆r. There-
fore the volume under the surface and above each polar rectangle can be approximated
as

vol. one box ≈ r∗∆θ∆rf(r∗ cos θ∗, r∗ sin θ∗).

Here f(r∗ cos θ∗, r∗ sin θ∗) is the value of the function at the point P , which is also the
height of the box used in the approximation. To obtain an approximation for the entire
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volume below the surface, we sum over the entire polar grid:

vol. ≈
∑

(polar grid)

r∗∆θ∆rf(r∗ cos θ∗, r∗ sin θ∗)

⇒ vol. = lim
∆r,∆θ→0

∑
(polar grid)

r∗∆θ∆rf(r∗ cos θ∗, r∗ sin θ∗)

=
x

D

f(r cos θ, r sin θ)r dθ dr.

The double integral in rectangular coordinates is then transformed as follows:
x

R

f(x, y) dx dy =
x

S

f(r cos θ, r sin θ)r dr dθ.

28.1 Example: Find
x

D

e−(x2+y2) dx dy where D is the region

bounded by the circle x2 + y2 = R2.
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28.2 Example: Find the volume of the solid bounded by the
plane z = 0 and the paraboloid z = 1− x2 − y2.
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28.3 Find the volume of the solid that lies under the paraboloid
z = x2 + y2 and inside the cylinder x2 + y2 = 2x, for z ≥ 0.
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29 Mass, centre of mass and moments

By the end of this section, you should be able to answer the following questions:

• How can we use a double integral to find the mass of a two dimensional object if
the density function is known?

• How do we use double integrals to locate the centre of mass of such an object?

• How do we calculate the moments of such an object about the coordinate axes?

Ultimately we want to find a point P on which a thin plate of any given shape
balances horizontally. Such a point is called the centre of mass of the plate.

2

2

1

1

d d

mm

Consider a rod of negligible mass balanced on a fulcrum. The rod has masses m1

and m2 at either end, which are a distance d1 and d2 respectively from the fulcrum.
Because the rod is balanced, we have (thanks to Archimedes) the relationship

m1d1 = m2d2.

Now suppose the rod lies on the x-axis with m1 at x = x1, m2 at x = x2 and the centre
of mass at x.

m m
1 2

x

− −

x1 x2

x− x1 x2 x−

x−

In this case we can write d1 = x− x1 and d2 = x2 − x, so Archimedes’ relationship
can be expressed

m1(x− x1) = m2(x2 − x) ⇒ x =
m1x1 +m2x2

m1 +m2

.

The numbers m1x1 and m2x2 are called the moments of the masses m1 and m2 respec-
tively.
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n3 xx

x

−x2x1x

In general, a one dimensional system of n “particles” with masses m1, . . . ,mn lo-
cated at x = x1, . . . , xn has its centre of mass located at

x =

n∑
i=1

mixi

n∑
i=1

mi

=
M

m

where m =
∑
mi is the total mass of the system and the sum of the individual moments

M =
∑
mixi is called the moment of the system (with respect to the origin).

Now suppose the rod (which has length l) has mass which is distributed according
to the (integrable) density function (mass/unit length)

ρ(x) = lim
∆x→0

∆m

∆x
.

Consider a small strip of width ∆x containing the point x∗. The mass of this strip can
be approximated by ρ(x∗)∆x. Now cut the rod into n strips, and in the same way as
above determine (approximately) the mass of each strip. To obtain an approximation
for the total mass m of the rod, just add the masses of each n strips:

m ≈
n∑
i=1

ρ(x∗i )∆xi.

To obtain a precise expression for the mass, we take the limit of this sum as n→∞.
In other words,

m =

∫ l

0

ρ(x)dx.

We have a similar construction for the moment of the system. Consider the moment
of each strip ≈ x∗i ρ(x∗i )∆xi. If we add these, we obtain an approximate expression for
the moment of the system:

M ≈
n∑
i=1

x∗i ρ(x∗i )∆xi.

Taking the limit as n → ∞ we obtain an expression for the moment of the system
about the origin:

M =

∫ l

0

xρ(x)dx.

The centre of mass is located at x = M/m.
Now let’s generalize this to two dimensions.
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Suppose the lamina occupies a region D in the x-y plane and its density (in units
of mass/unit area) is given by an integrable function ρ(x, y). In other words,

ρ(x, y) = lim
∆m

∆A
,

where ∆m and ∆A are the mass and area of a small rectangle containing the point
(x, y), and the limit is taken as the dimensions of ∆A→ 0.

D

P

x

y

Figure 26: The point P = (x∗i , y
∗
j ) in the rectangle Rij.

To approximate the total mass of the lamina, we partition D into small rectangles
(say Rij) and choose a point (x∗i , y

∗
j ) inside Rij. The mass of the lamina inside Rij is

approximately ρ(x∗i , y
∗
j )∆Aij, where ∆Aij is the area of Rij. Adding all such masses,

we have the approximation

m ≈
m∑
i=1

n∑
j=1

ρ(x∗i , y
∗
j )∆Aij.

If we then take the limit as m,n→ 0, we obtain

m =
x

D

ρ(x, y)dA.
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In a similar way, we can determine the moment of the lamina about the x-axis to
be

Mx =
x

D

yρ(x, y)dA

and the moment of the lamina about the y-axis to be

My =
x

D

xρ(x, y)dA.

The centre of mass is located at coordinates (x, y), where

x =
My

m
, y =

Mx

m
.

29.1 Example: find the centre of mass of a triangular lamina
with vertices (0, 0), (1, 0) and (0, 2) with constant density
ρ0.
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29.2 Example: find the centre of mass of a rectangle with
vertices (0, 0), (2, 0), (2, 1) and (0, 1) with density ρ(x, y) =
6x+ 12y.
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30 Introduction to triple integrals

By the end of this section, you should be able to answer the following questions:

• How do you evaluate a triple integral?

• How do you use a triple integral to find the mass of a solid object with known
density?

• How do you change the order of integration in a triple integral?

We can extend the definition of a double integral to a triple integral

y

R

f(x, y, z)dV,

where R is a region in R3 and dV is an element of volume.
If R is a region in R3 specified by

r(x, y) ≤ z ≤ s(x, y)
p(x) ≤ y ≤ q(x)

a ≤ x ≤ b
(14)

then y

R

f(x, y, z)dV

=

∫ b

a

{∫ q(x)

p(x)

[∫ s(x,y)

r(x,y)

f(x, y, z)dz

]
dy

}
dx.

In two dimensions, there are 2 possible orders of integration. In three dimensions, there
are 6.
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30.1 Find the mass of a rectangular block with dimensions
0 ≤ x ≤ L, 0 ≤ y ≤ W and 0 ≤ z ≤ H if the density is
ρ = ρ0 + αxyz.

213



30.2 Evaluate
y

R

z dV over the region R bounded by the sur-

faces x = 0, y = 0, z = 0 and x+ y + z = 1.
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30.3 Changing the order of integration

Express the integral

∫ 1

0

∫ 1

√
x

∫ 1−y

0

f(x, y, z) dz dy dx, in the orders dz dx dy and dy dz dx.
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31 Cylindrical coordinates

By the end of this section, you should be able to answer the following questions:

• What is the relationship between rectangular coordinates and cylindrical coordi-
nates?

• How do you transform a triple integral in rectangular coordinates into one in
terms of cylindrical coordinates?

• What is the Jacobian of the transformation?

Sometimes it is useful to use cylindrical coordinates in order to simplify the integral.
This involves the transformation

x = r cos θ, y = r sin θ, z = z. (15)

y

z

x

z

rθ

y

x
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We now aim to calculate a small element of volume of a cylindrical shell. This
will then show how in a triple integral we can transform from rectangular coordinates
to cylindrical coordinates by substituting the transformation (15) and by making the
change

dx dy dz −→ r dr dθ dz.

Consider the following diagram.

dz

dr

rd θ

The important result is that the triple integral in rectangular coordinates transforms
as follows: y

R

f(x, y, z) dx dy dz =
y

C

f(r cos θ, r sin θ, z) r dr dθ dz.
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31.1 A simple example: Find the volume of a cylinder of ra-
dius R and height H. (Ans. πR2H)
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31.2 Find the mass of the solid defined by the region contained
within the cylinder x2 + y2 = 1 below the plane z = 4 and
above the paraboloid z = 1− x2 − y2. The density at any
given point in the region is proportional to the distance
from the axis of the cylinder.
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32 Spherical coordinates

By the end of this section, you should be able to answer the following questions:

• What is the relationship between rectangular coordinates and spherical coordi-
nates?

• How do you transform a triple integral in rectangular coordinates into one in
terms of spherical coordinates?

• What is the Jacobian of the transformation?

Sometimes it is useful to use spherical coordinates in order to simplify the integral.
This involves the transformation

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ. (16)

In this case θ is longitude, φ is co-latitude, and r the distance from the origin.

y

z

x

z

θ

r

φ

x

y
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We now aim to calculate a small element of volume of a spherical shell. This will
then show how in a triple integral we can transform from rectangular coordinates to
spherical coordinates by substituting the transformation (16) and by making the change

dx dy dz −→ r2 sinφ dr dθ dφ.

Consider the following diagram.

dφd

d

dr

rsin  θ

rd θ

rd φ

 φ
 θ

The important result is that the triple integral in rectangular coordinates transforms
as follows:

y

R

f(x, y, z) dx dy dz

=
y

S

f(r cos θ sinφ, r sin θ sinφ, r cosφ) r2 sinφ dr dθ dφ.
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32.1 A simple example: Find the volume of a sphere of radius
R.
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32.2 Find the mass of a sphere of radius R whose density is
given by ρ(x, y, z) = e−(x2+y2+z2)1/2.

226



32.3 Find the volume of the “ice cream cone” R between a
sphere of radius a (centred at the origin) and the cone
z =

√
x2 + y2.
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33 Moments of inertia (second moments)

By the end of this section, you should be able to answer the following questions:

• How do you locate the centre of mass of a solid object using a triple integral?

• How do you calculate the moments of inertia about the three coordinate axes?

The moment of inertia of a particle of mass m about an axis (x, y, or z) is defined
to be mr2 where r is the distance from the particle to the axis.

It is sometimes referred to as rotational inertia and can be thought of as the rota-
tional analogue of mass for linear motion. For example, linear kinetic energy can be
expressed as 1

2
mv2, and the rotational kinetic energy as 1

2
Iω2. Linear momentum is

determined by the formula p = mv, while angular momentum is given by L = Iω. In
these examples, I is the moment of inertia and ω the angular velocity.

As we have seen from previous examples, the mass of a solid with density ρ(x, y, z)
occupying a region R in R3 is given by

m =
y

R

ρ(x, y, z)dV.

The moments about each of the three coordinate planes are

Myz =
y

R

xρ(x, y, z)dV, Mxz =
y

R

yρ(x, y, z)dV,

Mxy =
y

R

zρ(x, y, z)dV

The centre of mass is then located at the point (x, y, z) where

x =
Myz

m
, y =

Mxz

m
, z =

Mxy

m
.

The moments of inertia about each of the three coordinate axes work out to be

Ix =
y

R

(y2 + z2)ρ(x, y, z)dV,

Iy =
y

R

(x2 + z2)ρ(x, y, z)dV,

Iz =
y

R

(x2 + y2)ρ(x, y, z)dV.
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33.1 Derive the integral formula for Ix
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33.2 Example: locate the centre of mass of a solid hemisphere
of radius a with density proportional to the distance from
the centre of the base. Find its moment of inertia about
the z-axis.
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34 Conservative vector fields

By the end of this section, you should be able to answer the following questions:

• What is meant by a conservative vector field and a corresponding potential func-
tion?

• Given a potential function, how do you determine the corresponding conservative
vector field?

• Given a conservative vector field, how do you determine a corresponding potential
function?

34.1 Vector fields

In what follows, the notation is always

r = xi + yj or r = xi + yj + zk.

A vector field in the x-y plane is a vector function of 2 variables

F (r) = F (x, y) = (F1(x, y), F2(x, y))

= F1(x, y)i + F2(x, y)j.

That is, associated to a point (x, y) is the vector F (r).

34.1.1 Example: F (r) = (−y, x) = −yi + xj.

X

Y
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Similarly a vector field in 3-D is a vector function of 3 variables

F (r) = F (x, y, z)

= (F1(x, y, z), F2(x, y, z), F3(x, y, z))

= F1(x, y, z)i + F2(x, y, z)j + F3(x, y, z)k

34.1.2 Example: Newtonian gravitational field

F (r) = −mMG

||r||3
r = F (x, y, z)

=
−mMGx

(x2 + y2 + z2)3/2
i +

−mMGy

(x2 + y2 + z2)3/2
j

+
−mMGz

(x2 + y2 + z2)3/2
k

Y

Z

X
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34.2 Gradient of a scalar field, conservative vector fields

Recall for a differentiable scalar function f(x, y) in two dimensions, we define

gradf =
∂f

∂x
i +

∂f

∂y
j.

For a differentiable scalar function f(x, y, z) in three dimensions, we define

gradf =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

Alternatively we define the differential operator

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

so gradf = ∇f .

34.2.1 Example: find the gradient of f(x, y, z) = x2y3z4.

Note ∇f is a vector. It’s length and direction are independent of the choice of
coordinates. ∇f (evaluated at a given point P ) is in the direction of maximum increase
of f at P .

You may see the scalar function f referred to as a scalar field. If a vector field v
and a scalar field f are related by v = ∇f , we call f a potential function and v a
conservative vector field.
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34.2.2 Verify that the Newtonian gravitational field is conservative with

potential function f(x, y, z) =
mMG√

x2 + y2 + z2
.

Given a conservative vector field, how can we determine a corresponding potential
function? The next example outlines this procedure.
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34.2.3 The vector field F (x, y) = (3+2xy)i+(x2−3y2)j is conservative. Find
a corresponding potential function.

Can we still determine a potential function when the conservative vector field is in
three dimensions?
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34.2.4 The vector field F (x, y, z) = y2i+ (2xy+ e3z)j + 3ye3zk is conservative.
Find a corresponding potential function.

Is there a way of determining whether or not a given vector field is conservative?
To answer this question, we need to go back to the study of line integrals.
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35 The fundamental theorem for line integrals, path

independence

By the end of this section, you should be able to answer the following questions:

• How do you evaluate line integrals?

• What is the fundamental theorem for line integrals and its consequences?

• What is a path independent line integral and what are its connections with con-
servative vector fields and line integrals over closed curves?

35.1 Line integrals in the plane

Recall the definite integral

∫ b

a

f(x) dx gives the net area above the x-axis and below

the curve y = f(x). We can generalise this.
Consider the following problem: How do we calculate the area of the region between

the curve C in the x-y plane and its image on the surface z = f(x, y)?

y

z

x

C

z = f(x, y)

If the curve C can be parametrised by r(t) = x(t)i + y(t)j for a ≤ t ≤ b, then the
area in question is given by the formula

area =

∫
C

f(x, y) dS =

∫ b

a

f(x(t), y(t))||r′(t)|| dt,

where dS is the infinitesimal element of arclength of C.
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35.2 Work done by a force, line integrals of vector fields

We can also consider integrating a vector field over a curve in the plane.
In the case F is a field of force you should already have an idea (from MATH1052/MATH1072)

how to determine the work done by F in moving a particle along a curve C. First recall
the cases of:

1. Constant F in 1D over a distance d, the work done is given by W = Fd.

2. Constant F in 2D over a straight line between points P and Q, W = F ·
−→
PQ.

We can use these straightforward cases to derive the more general expression for
work done by a variable force F (x, y) over a piecewise continuous smooth curve C:

W =

∫
C

F (x, y) · T (x, y) dS,

where T (x, y) is a unit tangent vector to C at a given point (x, y) on C.
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35.3 Evaluating line integrals of vector fields

To evaluate ∫
C

F (x, y) · T (x, y) dS, (17)

the strategy is to parameterise C and express all quantities in the line integral in terms
of this parameterisation. Namely,

1. Parameterise C by specifiying a vector function r(t) = x(t)i+y(t)j with t ∈ [a, b]
that describes C.

2. Write F (x, y) restricted to C as F (r(t)) = F (x(t), y(t)).

3. Write T (x, y) =
r′(t)

||r′(t)||
, where r′(t) = x′(t)i + y′(t)j is a tangent vector to C.

4. Write dS = ||r′(t)||dt.

5. Evaluate the line integral as a definite integral in terms of the parameter t:∫
C

F (x, y) · T (x, y) dS =

∫ b

a

[
F (r(t)) · r′(t)

||r′(t)||

]
||r′(t)||dt

=

∫ b

a

F (r(t)) · r′(t)dt.

35.4 Common notation

Let C be a piecewise continuous smooth curve in the x-y plane connecting points A and
B. Let F (x, y) = F1(x, y)i+F2(x, y)j be a vector field. The line integral in expression
(17) is often expressed as ∫

C

F (r) · dr

or ∫
C

F1(x, y)dx+ F2(x, y)dy,

both of which are parameter independent ways of writing the line integral in (17). The
expressions use the notation r = xi + yj, dr = dxi + dyj. Introducing a parameteri-
sation r(t) for t ∈ [a, b] allows us to evaluate the line integral. The expressions above
are useful notations to remind us how to evaluate the line integrals.
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35.4.1 Example: let A = (0, 1), B = (1, 2). Evaluate

∫
C

((x2 − y)dx+ (y2 + x)dy)

along the curve C given by: (i) the straight line from A to B; (ii)
the parabola y = x2 + 1 from A to B.
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Note the line integrals in the previous example were path dependent. In other words,
they have different values for different paths.

We will now investigate path independent line integrals.
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35.5 Line integrals of conservative vector fields, path inde-
pendence.

If F is a continuous vector field with domain D, we say the line integral

∫
C

F · dr is

path independent if ∫
C1

F · dr =

∫
C2

F · dr

for any two paths C1 and C2 in D that have the same end points.

35.5.1 The fundamental theorem for line integrals

If C is a smooth curve determined by r(t) for t ∈ [a, b] and f(x, y) is differentiable
with ∇f being continuous on C, then∫

C

∇f · dr = f(r(b))− f(r(a)).

Proof:

One consequence is that for conservative vector fields ∇f , we have∫
C1

∇f · dr =

∫
C2

∇f · dr.

That is, the line integral of a conservative vector field is path independent.
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It turns out, the converse is also true. Suppose F is continuous on an open, con-

nected region D. If

∫
C

F · dr is path independent in D, then F is conservative.

Proof:

Open region: every point in the region is the centre of some disc lying entirely in
the region (ie. an open region doesn’t include the boundary points).

Connected region: Any two points in D can be joined by a path lying entirely in D.
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Another interesting result is that if

∫
C

F · dr is path independent in some region

D, then

∮
C′
F · dr = 0 for every closed path C ′ in D. Here the symbol “

∮
” indicates

the integral is over a closed curve.
Proof:
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Perhaps it is not surprising that the converse is also true. That is, if

∮
C′
F · dr = 0

for every closed path C ′ in some region D, then

∫
C

F · dr is path independent in D.

Proof:

We are looking at these results carefully because we ultimately want a simple way
of checking whether or not a vector field is conservative. We are not quite there yet,
but in the next section, we will arrive at a surprisingly simple test for a conservative
vector field.

Note also that more details of these proofs (with slightly more mathematical rigour)
can be found in Stewart, pages 1099 – 1103.
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36 Green’s theorem and a test for conservative fields

By the end of this section, you should be able to answer the following questions:

• What is Green’s theorem and under what conditions can it be applied?

• How do you apply Green’s theorem?

• Given a vector field in two dimensions, how can we test whether or not it is
conservative?

36.1 The story so far

The following diagram summarises the relationships between conservative vector fields,
path independent line integrals and closed line integrals we have seen so far.

F conservative

∫
C

F · dr path independent

66nnnnnnnnnnnnnnnnnnnnnnnnnnn
wwooo

ooo
ooo

ooo
ooo

ooo
ooo

ooo
oo

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T
iiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT∮

C

F · dr = 0, ∀ closed C

36.2 Clairaut’s theorem and consequences

Suppose a function of two variables f is defined on a disc D that contains the point

(a, b). If the functions
∂2f

∂x∂y
and

∂2f

∂y∂x
are both continuous on D, then

∂2f

∂x∂y
(a, b) =

∂2f

∂y∂x
(a, b).
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Say we have a conservative vector field F = F1i+F2j. This means that there exists
an f(x, y) such that

F1 =
∂f

∂x
, F2 =

∂f

∂y
.

An immediate consequence of Clairaut’s theorem is that

∂F1

∂y
=

∂2f

∂y∂x
=

∂2f

∂x∂y
=
∂F2

∂x
.

In otherwords, we have the following:

If F = F1i + F2j is a conservative vector field, then

∂F1

∂y
=
∂F2

∂x
.

Let’s add this to our diagram:

F conservative

''OO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO

∫
C

F · dr path independent

66nnnnnnnnnnnnnnnnnnnnnnnnnnn
wwooo

ooo
ooo

ooo
ooo

ooo
ooo

ooo
oo

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T
iiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

∂F1

∂y
=
∂F2

∂x

∮
C

F · dr = 0, ∀ closed C

If we can reverse the new arrow, then we would have the criterion that we need!
That is, the condition

∂F1

∂y
=
∂F2

∂x

would be a test for a conservative vector field. To do this, we require one more piece
of the puzzle. That is Green’s theorem.
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36.3 Green’s theorem

Let D be a region in the x-y plane bounded by a piecewise-smooth, simple closed curve

C, which is traversed with D always on the left. Let F1(x, y), F2(x, y),
∂F1

∂y
and

∂F2

∂x
be continuous in D. Then

x

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy =

∮
C

(F1dx+ F2dy).

This theorem relates a double integral to a line integral over a closed curve. For
example, we can use Green’s theorem to evaluate complicated line integrals by treating
them as double integrals, or vice versa.

Regarding our discussion on conservative vector fields, we have the following corol-
lary to Green’s theorem:

If
∂F1

∂y
=
∂F2

∂x
, then

∮
C

F · dr = 0.

Note that F = F1i + F2j.
If we add this to our diagram, we can now link any four statements via the arrows.

In otherwords all four statements are equivalent.

F conservative

''OO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO

∫
C

F · dr path independent

66nnnnnnnnnnnnnnnnnnnnnnnnnnn
wwooo

ooo
ooo

ooo
ooo

ooo
ooo

ooo
oo

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T
iiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

∂F1

∂y
=
∂F2

∂x

xxqqq
qqq

qqq
qqq

qqq
qqq

qqq
qq

∮
C

F · dr = 0, ∀ closed C

In particular, we now have a test to determine whether or not a given two dimen-
sional vector field is conservative:

The vector field F is conservative if and only if
∂F1

∂y
=
∂F2

∂x
.
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36.3.1 Find the work done by the force F = x2yi+xy2j anticlockwise around
the circle with centre at the origin and radius a.

X

Y
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36.3.2 Evaluate the line integral

∫
C

2xy dx+ (x2 + 3y2) dy, where C is the

path from (0, 1) to (1, 0) along y = (x − 1)2 and then from (1, 0) to
(2, 1) along y = x− 1.
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36.3.3 Evaluate

∫
C

(3 + 2xy)dx+ (x2 − 3y2)dy where C is the curve parametrised

by r(t) = (1− cos(πt))i + (1 + sin3(πt))j for 0 ≤ t ≤ 1/2.
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37 On proving Green’s theorem

Recall some important properties of double and line integrals.

x

D1∪D2

f(x, y) dA =
x

D1

f(x, y) dA+
x

D2

f(x, y) dA,

x

D

(f1(x, y) + f2(x, y)) dA =
x

D

f1(x, y) dA+
x

D

f2(x, y) dA,

where D1 and D2 are disjoint (apart from sharing a boundary). If C consists of the
segments C1, · · · , C4 such that C = C1 ∪ C2 ∪ C3 ∪ C4, then∫

C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr +

∫
C3

F · dr +

∫
C4

F · dr

With the understanding that∫
C

F1 dx =

∫
C

(F1 dx+ 0 dy),

∫
C

F2 dy =

∫
C

(0 dx+ F2 dy),

one can prove (Exercise!) that

∫
C

(F1 dx+ F2 dy) =

∫
C

F1 dx+

∫
C

F2 dy.

Moreover one can prove the following two results:

1. If C can be parametrized by r(t) = ti + g(t)j with a ≤ t ≤ b, then∫
C

F1(x, y) dx =

∫ b

a

F1(x, g(x)) dx.

2. If C can be parametrized by r(t) = h(t)i + tj with c ≤ t ≤ d, then∫
C

F2(x, y) dy =

∫ d

c

F2(h(y), y) dy.

We will use these results in the following.
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Green’s Theorem. Let D be a region in the x-y plane bounded by a piecewise-
smooth, simple, closed, positively oriented curve C, and let F1(x, y), F2(x, y), ∂F1(x,y)

∂y
, ∂F2(x,y)

∂x

be continuous. Then,

x

D

(∂F2

∂x
− ∂F1

∂y

)
dA =

∮
C

(F1 dx+ F2 dy).

In Sections 37.1-37.3, we prove the theorem for a particular class of regions. A
general proof is beyond the scope of this workbook.

37.1 Region of type I

Recall that a region D is of type I if

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

where g1 and g2 are continuous functions. We prove that for D of type I,

x

D

∂F1

∂y
dA = −

∮
C

F1 dx.
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37.2 Region of type II

A region D is of type II if

D = {(x, y) |h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d},

where h1 and h2 are continuous functions. Then similarly to the last subsection, by
considering D as a type II region, we find that

x

D

∂F2

∂x
dA =

∮
C

F2 dy.
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37.3 Region of both type I and II

If D is of both type I and II, we can combine the results of Sections 37.1 and 37.2,
thereby obtaining Green’s theorem:

x

D

(∂F2

∂x
− ∂F1

∂y

)
dA =

x

D

∂F2

∂x
dA−

x

D

∂F1

∂y
dA =

∮
C

F2 dy −
(
−
∮
C

F1 dx
)

=

∮
C

(F1 dx+ F2 dy).

37.4 More general regions

If the planar region is neither type I nor type II, our strategy is to attempt to partition
the region into subregions which are both type I and type II, then make use of the
results of the previous calculations.

In the following two examples, partition the regions into subregions that are both
type I and type II. Could we generalise the previous calculations to deal with subregions
that are only either type I or II?

y = −1

x = 1

x = −1

y

x
D

2x = y

2y = x  +1
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38 Flux of a vector field

By the end of this section, you should be able to answer the following questions:

• What is the flux of a constant vector field across a flat surface in 3D?

• What is the flux of a vector field across a plane curve in 2D?

In this section we introduce the concept of flux: In three dimensions, the flux of a
vector field across a given surface is defined to be the “flow rate” of the vector field
through the surface.

Since many vector fields involve no motion (eg. electric fields, magnetic fields), this
definition can be very difficult to comprehend at first. A nice context for working with
flux in order to understand its definition is by considering the velocity vector of a fluid
(so now we do have motion). In three dimensions, the flux of a fluid across a surface
is given in units of volume per unit time. In other words, the flux tells us how much
of the fluid (volume) passes through a given surface in one second.

Consider a river flowing at a constant velocity of 2m/s in only one direction. Now
imagine placing a 3m square fishing net into the river so that it somehow stays per-
pendicular to the flow of the river. What is the flux of the water through the net?
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θ
θ

θ

θ

Now if we rotate the net through an angle θ, what is the flux through the net?
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38.1 Flux in 2D

Before we look at the flux of a vector field through more general surfaces, let’s look at
flux in two dimensions, by considering the flow of a two dimensional fluid through a
curve in the x-y plane. Note that in this context of a fluid in 2D, flux has dimensions
area per unit time.

To start, consider the problem of calculating the flux of a fluid with constant velocity
v = 2i through a line segment C perpendicular to the flow, where C is given by

C = {(x, y) | x = 2, 2 ≤ y ≤ 6}.

y

x
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Now consider calculating the flux of the velocity vector v(x, y) in the x-y plane
through a curve C.

We first divide C up into arcs of length ∆S, and approximate v as constant over
each arc.

C

This constant vector over each arc shall be evaluated at a representative point in
each arc, say P ∗ = (x∗, y∗). We also approximate the arc as a straight line, so that

∆S ≈
√

(∆x)2 + (∆y)2 ≈ ||r′(t)|| ∆t.

P *

S∆

P *n(    )

P *v(    )

The component of v which is perpendicular to C (over ∆S) is ≈ v(P ∗) ·n(P ∗). We
then have

flux through one arc ≈ v(P ∗) · n(P ∗)∆S.

⇒ total flux through C ≈
∑
i

v(P ∗i ) · n(P ∗i )∆Si.
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If we take the limit as ∆S → 0, we obtain an exact expression for the flux over the
entire curve C as a line integral:

Flux =

∫
C

v · n dS,

where n is a unit vector normal to C.
We use this expression as a definition of flux of any two dimensional vector field v

across a plane curve C. Note then that

dimensions of flux (in 2D) = (dimensions of v) × (distance).

38.1.1 Evaluating flux in 2D

To evaluate the line integral in the definition of flux, we need a parametrisation of C,
say r(t) = x(t)i + y(t)j for a ≤ t ≤ b (say). We define

r′(t) = ẋ i + ẏ j.

A unit tangent vector to C is then given by

T =
r′(t)

||r′(t)||
.

By the definition of vector cross product, and since k is a unit vector normal to the
x-y plane, being careful of the direction of n, we can take

n = T × k =
1

||r′(t)||

∣∣∣∣∣∣
i j k
ẋ ẏ 0
0 0 1

∣∣∣∣∣∣
=

1

||r′(t)||
(ẏ i− ẋ j)

⇒ v · n =
v · (ẏ i− ẋ j)

||r′(t)||

=
v1ẏ − v2ẋ

||r′(t)||
,

where v(x, y) = v1(x, y)i + v2(x, y)j. Noting also that in the integral we have dS =
||r′(t)|| dt, we then have a means of evaluating the line integral (2D flux integral) as∫

C

v · n dS =

∫ t=b

t=a

(v1(t)ẏ − v2(t)ẋ) dt.
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X

Y

38.1.2 Calculate the flux of v = −yi+xj (in the positive x direction) across
the line x = 2 (for 2 ≤ y ≤ 6).
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38.2 Outward flux across a closed curve in the plane

Let C be a piecewise-smooth, simple closed curve. Let v1(x, y), v2(x, y) be continuous
in the region bounded by C. (Note that these are some of the conditions of Green’s
theorem!)

The net outward flux of v = v1i + v2j across C is given by

Net outward flux =

∮
C

v · n dS,

where n is a unit vector normal to C, directed outward from the region bounded by
C.

38.2.1 Calculate the outward flux of v = xyi + xyj across the curve from
(2,0) to (-2,0) via the semicircle of radius 2 centred at the origin
(for y ≥ 0) followed by the straight line from (-2,0) to (2,0).
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39 Divergence of a vector field (div)

By the end of this section, you should be able to answer the following questions:

• How do you calculate the divergence of a given vector field?

• What is the significance of divergence?

• How does it relate to flux?

In this section we introduce the concept of divergence of a vector field.

39.1 Calculating divergence

Let
v(x, y, z) = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k

be a differentiable vector function. Then the function

div v =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
= ∇ · v

is called the divergence of v. Note div v is a scalar quantity.
Divergence has an analogous definition in two dimensions. For

F (x, y) = F1(x, y)i + F2(x, y)j ⇒ divF =
∂F1

∂x
+
∂F2

∂y
.

39.1.1 Example: v = xy2i + xyzj + yz2k. Find div v
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39.2 Understanding div in two dimensions.

Consider the flow of a two dimensional fluid with continuous velocity field v(x, y) =
v1(x, y)i + v2(x, y)j. Our aim is to calculate the outward flux from a small rectangle
in the plane of area ∆x∆y as in the diagram below.

1

2

3

4

y+   y∆

x+   x∆

x

y

y

x

We first approximate the flux across each of the four sides of the rectangle. In each
case the approximation will be v ·n∆S, where we assume v is constant over each edge.
Also let x∗ ∈ [x, x+ ∆x] and y∗ ∈ [y, y + ∆y] represent chosen points in each interval.

Edge 1: we evaluate v at (x∗, y) and assume it is constant across the entire edge.
An outwardly pointing unit normal vector is −j.

flux ≈ v(x∗, y) · (−j) ∆x.

Edge 2: we evaluate v at (x + ∆x, y∗) and assume it is constant across the entire
edge. An outwardly pointing unit normal vector is i.

flux ≈ v(x+ ∆x, y∗) · (i) ∆y.

Edge 3: we evaluate v at (x∗, y + ∆y) and assume it is constant across the entire
edge. An outwardly pointing unit normal vector is j.

flux ≈ v(x∗, y + ∆y) · (j) ∆x.

Edge 4: we evaluate v at (x, y∗) and assume it is constant across the entire edge.
An outwardly pointing unit normal vector is −i.

flux ≈ v(x, y∗) · (−i) ∆y.
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Combining all four terms gives an approximation to the net outward flux:
net outward flux

≈ (v(x+ ∆x, y∗)− v(x, y∗)) · i ∆y + (v(x∗, y + ∆y)− v(x∗, y)) · j ∆x

=

(
v(x+ ∆x, y∗)− v(x, y∗)

∆x

)
· i∆x∆y +

(
v(x∗, y + ∆y)− v(x∗, y)

∆y

)
· j∆x∆y

=

(
v1(x+ ∆x, y∗)− v1(x, y∗)

∆x
+
v2(x∗, y + ∆y)− v2(x∗, y)

∆y

)
∆x∆y

≈
(
∂v1

∂x
+
∂v2

∂y

)
∆x∆y.

= div(v)∆x∆y.

Hence, we have
flux out of a rectangle

area of rectangle
≈ div(v).

If we take the limit as the dimensions of the rectangle appproach 0, we have

div(v) = lim
∆A→0

flux out of ∆A

∆A
.

In other words, div(v) is the “outward flux density” of v at a given point.
This concept generalises quite naturally to three dimensions:

div(v(x, y, z)) = lim
∆V→0

flux out of ∆V

∆V
.

In the context of fluids (our main focus so far) we can say div(v(x, y, z)) measures the
tendency of the fluid to “diverge” from the point (x, y, z).
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39.3 Outward flux across a closed curve in the plane (revis-
ited)

One final calculation uses the divergence to calculate the net outward flux of v across
a closed curve. We have already seen that we can evaluate this quantity by calculating∮
C

v · n dS.

Now let D be a region in the x-y plane bounded by a piecewise-smooth, simple
closed curve C, which is traversed with D always on the left. Let v1(x, y), v2(x, y) have
continuous derivatives in D (again the conditions of Green’s theorem!).

CD

By the previous calculation involving divergence, we can also approximate the out-
ward flux from the region by dividing D up into small rectangles and approximating
the net outward flux across each rectangle. We know that for one rectangle,

outward flux of one rectangle ≈ div(v(x∗, y∗))∆x∆y,

where (x∗, y∗) is some point inside the rectangle. We repeat this for each rectangle
containing part of the region D, so that

net outward flux across C ≈
∑

div(v(x∗, y∗))∆x∆y.

Taking the limit as ∆x,∆y → 0, we have

net outward flux across C =
x

D

div(v(x, y)) dA,

the double integral of the region D.
To obtain the flux, we integrate the flux density over the region. Compare this with

the context of mass density: to obtain the mass, we integrate the mass density over
the region.

Finally, the two ways of calculating the same quantity must obviously be equal:∮
C

v(x, y) · n dS =
x

D

div(v(x, y)) dA.
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39.4 Relationship to Green’s theorem

We have seen how to evaluate the 2D flux integral:∮
C

v · n dS =

∫ t=b

t=a

(v1(t)ẏ − v2(t)ẋ) dt.

This can be rewritten as ∮
C

v · n dS =

∮
C

v1 dy − v2 dx.

If we define F1(x, y) = −v2(x, y) and F2(x, y) = v1(x, y), we then have∮
C

v · n dS =

∮
C

F1 dx+ F2 dy.

We also have

div(v) =
∂v1

∂x
+
∂v2

∂y
=
∂F2

∂x
− ∂F1

∂y
,

so that x

D

div(v) dA =
x

D

(
∂F2

∂x
− ∂F1

∂y

)
dA.

This tells us that in terms of the new vector field

F = −v2i + v1j = F1i + F2j,

the two ways of calculating flux are given by

x

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy =

∮
C

(F1dx+ F2dy).

This is none other than Green’s theorem. So the flux identity we obtained at the
bottom of the previous page is just Green’s theorem in disguise. We shall call this the
flux form of Green’s theorem.
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39.4.1 Use the flux form of Green’s theorem to calculate the outward flux
of v = xyi+xyj across the curve from (2,0) to (-2,0) via the semicircle
of radius 2 centred at the origin (for y ≥ 0) followed by the straight
line from (-2,0) to (2,0).
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39.4.2 For the following graphs of vector fields, determine whether the
divergence is positive, negative or zero.

X

Y

X

Y
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X

Y

X

Y
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40 Parametrisation of surfaces in R3

By the end of this section, you should be able to answer the following questions:

• What does it mean to parametrise a surface in R3?

• How do you parametrise certain surfaces?

40.1 Parametric surfaces

We have already seen two ways of representing a surface in R3: explicitly as
z = f(x, y) or implicitly as F (x, y, z) = 0.

Another way of representing a surface S in R3 is by a parametrisation. This is
where the coordinate variables are functions of two parameters u and v:

x = x(u, v), y = y(u, v), z = z(u, v)

and the vector
r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

traces out the surface as u, v vary over some region D in the “u-v plane”. So for every
point (u, v) in D, there corresponds a point on the surface S.

The following diagram shows the point P on the surface S which corresponds to
the point (u, v) in the region D in the u-v plane. As (u, v) moves around all points in
D, the point P moves around in S, tracing out the entire surface.

P

u

v

(u,v)

D

x

y

z

S

Note that a surface defined explicitly by z = f(x, y) is equivalent to a parametri-
sation

r(x, y) = xi + yj + f(x, y)k,

where we treat the coordinate variables x and y as the parameters. Note that we
have not specified any bounds on the variables. Often the challenge is to not only find
suitable functions for a parametrisation, but for a finite surface to determine bounds
on the parameters.
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40.2 Parametrising surfaces using cylindrical and spherical
coordinates

We can use our knowledge of cylindrical and spherical coordinates to parametrise cer-
tain surfaces with which these coordinates are naturally associated.

Recall cylindrical coordinates:

x = r cos θ, y = r sin θ, z = z.

Setting exactly one of the cylindrical coordinates to a constant value necessarily gives
a parametric surface.

Setting z = 2 with 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3 describes a disc of radius 3, centred at
the z axis lying in the plane z = 2:
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Setting r = 5 with 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 3 describes the surface of a cylinder of
radius 5 and of height 2 between z = 1 and z = 3:

Setting θ = π/2 with 2 ≤ z ≤ 4, 0 ≤ r ≤ 1 describes a rectangle lying in the y-z
plane. Another description of the same surface would be x = 0, {(y, z) | 0 ≤ y ≤
1, 2 ≤ z ≤ 4}:
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40.2.1 Parametrise the paraboloid z = 1− x2 − y2 for z ≥ 0.
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Recall spherical coordinates: x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ.
Setting exactly one of the spherical coordinates to a constant value necessarily gives

a parametric surface.
Setting r = 2 with 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π describes the surface of a sphere of

radius 2 centred at the origin:

Setting φ = π/3 with 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π describes the open cone with angle
π/3 to the positive z-axis, the “mouth” of which lies on the sphere of radius 2 and with
vertex located at the origin:
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Setting θ = 0 with 0 ≤ r ≤ 3, 0 ≤ φ ≤ π describes the half disc of radius 3 lying in
the x-z plane:

40.2.2 Parametrise the part of the sphere x2 +y2 +z2 = 16 that lies between
the planes z = 2 and z = −2.
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40.3 Tangent planes

Let S be a surface parametrised by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k.

Here we find the tangent plane to S at a point P specified by r(a, b).
There are two important families of curves on S. One where u is a constant,

the other where v is a constant. The diagram below shows the relationship between
horizontal and vertical lines in D (in the u-v plane) and curves on S.

u

v D

x

y

z

S

u=a

v=b P
(a,b)

Setting u = a defines a curve on S parametrised by r(a, v), for all values of v such
that (a, v) lies in D. A tangent vector to this curve at P is

rv =
∂x

∂v
(a, b)i +

∂y

∂v
(a, b)j +

∂z

∂v
(a, b)k.

Similarly setting v = b defines another curve on S parametrised by r(u, b). A tangent
vector to this curve at P is

ru =
∂x

∂u
(a, b)i +

∂y

∂u
(a, b)j +

∂z

∂u
(a, b)k.

If ru and rv are continuous and ru× rv is never 0 inside D (we make an exception
for points on the boundary of D), we call the surface smooth (it has no “kinks”).

For a smooth surface, ru × rv is a normal vector at any point inside D. This
vector evaluated at (u, v) = (a, b) is also normal to the tangent plane at the point
P = (x(a, b), y(a, b), z(a, b)).

The equation of the tangent plane at P is given by

(ru(a, b)× rv(a, b)) · ((xi + yj + zk)− r(a, b)) = 0.
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40.3.1 Find the tangent plane to the surface parametrised by r(u, v) =
u2i + v2j + (u+ 2v)k at the point (1, 1, 3).
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41 Surface integrals

By the end of this section, you should be able to answer the following questions:

• What is a surface integral?

• How do you calculate the area of a parametric surface?

• How do you use surface integrals in applications such as calculating the mass of
a “surface lamina” and finding the average temperature over a surface.

41.1 Area of a parametric surface

Let S be a smooth parametric surface given by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k,

where we assume for simplicity that the parameter domain is a rectangle in the u-v
plane. To calculate the area of S, we work through the following steps:

1. Partition S into small patches.

2. Approximate each patch by a parallelogram lying in the tangent plane to the
corner of the patch closest to the u-v origin.

3. Calculate the area ∆S of each parallelogram and add them to give an approxi-
mation to the area of S.

4. Take the limit as the dimensions of ∆S → 0 to obtain an exact expression for
the area.

Let’s have a closer look at each step.
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1. A partition of S into patches will correspond to a partition of D (in the u-v plane)
into small rectangles.

D
S

The dimensions of the rectangles in D will be ∆u∆v.

2. Let one of the edges of a single patch be defined from parameter values (u, v) to
(u+ ∆u, v).

(u,v)r  

(u,v+   v)∆r  
(u+   u,v)∆r  

O

Using Pythagoras’ law in three dimensions, we can approximate the length of
this edge as

length ≈
√

(∆x)2 + (∆y)2 + (∆z)2

=

√(∆x

∆u

)2

+

(
∆y

∆u

)2

+

(
∆z

∆u

)2
∆u

≈ ||ru||∆u,

where in this case we have used ∆x = x(u+∆u, v)−x(u, v) etc (ie. the change is
only in u). Similarly, for an edge of patch running from parameter values (u, v)
to (u, v + ∆v) the length of that edge will be approximately ||rv||∆v.
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At the corner of the patch corresponding to parameter values (u, v), we can define
the two vectors ru∆u and rv∆v which form two sides of a parallelogram, the side
lengths of which coincide with our approximations to the lengths of the edges of
the patch.

(u,v)r  

(u,v+   v)∆r  
(u+   u,v)∆r  

rv∆v ru ∆u

O

3. The vector (ru ∆u) × (rv ∆v) is normal to the surface (and hence the tangent
plane) at that point. Its magnitude gives the area of the parallelogram we use to
approximate the area of the patch ∆S. We then have

∆S ≈ ||ru × rv|| ∆u ∆v.

Adding these approximations for each patch in S gives us an approximation to
the area of S:

area of S ≈
∑
i

∆Si =
∑
i

||rui × rvi || ∆ui ∆vi.

4. Finally taking the limit as ∆u,∆v → 0 we obtain

surface area =
x

S

dS =
x

D

||ru × rv|| du dv.
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41.1.1 Application: find the surface area of the paraboloid z = 1 − x2 − y2

for z ≥ 0.
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41.2 More on calculating surface integrals, applications

Let f(x, y, z) be a scalar function in R3. We can define the surface integral of f over
a smooth parametric surface S in R3 as

x

S

f(x, y, z) dS =
x

D

f(r(u, v))||ru × rv|| du dv.

Surface integrals and double integrals have similar applications. Indeed, a double
integral is merely a special case of a surface integral where the surface lies entirely in
the x-y plane.

For example, if a thin sheet has the shape of a surface S and the mass density at
the point (x, y, z) is ρ(x, y, z), then the mass of the sheet is given by a surface integral:

mass of sheet =
x

S

ρ(x, y, z) dS.

Another application is in calculating the average value of a function over a surface.
Let S be a smooth surface in R3. Then the average value of the function f(x, y, z) over
that surface is given by

average value over surface =
1

area of S

x

S

f(x, y, z) dS.

If the surface S is a closed surface, it is convention to write

{

S

f(x, y, z) dS

to represent the surface integral.
If S is a finite union of smooth surfaces S1, S2,. . ., Sn that intersect only at their

boundaries, then

x

S

f(x, y, z) dS =
x

S1

f(x, y, z) dS +
x

S2

f(x, y, z) dS + . . .+
x

Sn

f(x, y, z) dS.

Closed surfaces are often unions of smooth surfaces as demonstrated in the following
example.
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41.2.1 The function T (x, y, z) = x2 + y2 + z2 + 4 gives the temperature at any
point (x, y, z) on the surface of a solid hemisphere of radius 1 centred
at the origin, defined for z ≥ 0. Find the average temperature over
the surface.
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42 Variable transformations in double integrals

Recall that, under a change of variable x = x(u), a definite integral transforms as∫ b

a

f(x) dx =

∫ d

c

f(x(u))
dx

du
du,

where a = x(c) and b = x(d). We have seen how this generalises to iterated integrals,
when changing from cartesian coordinates to polar, cylindrical or spherical coordinates.
Here, we discuss how integrals transform under more general coordinate changes. For
simplicity, emphasis will be on coordinate changes in two dimensions and on the cor-
responding iterated (double) integrals.

42.1 Two-variable change of coordinates

In two dimensions, a change of coordinates is conveniently described by a surjective
transformation

T : S → R, (u, v) 7→ (x, y),

where
x = x(u, v), y = y(u, v).

We shall assume that T and its first-order partial derivatives are continuous on S. A
key property of T is that it maps any boundary of the region S in the u-v plane to a
boundary of R in the x-y plane. Such a transformation is particularly useful if we can
restrict the coordinates u, v to take values on a rectangle. After possibly applying a
second transformation between this rectangle and the unit square

{(u, v) ∈ R2 | 0 ≤ u, v ≤ 1},

this prompts us to focus on the case where S itself is the unit square.

If T (u, v) = (x, y), then the point (x, y) is called the image of the point (u, v). We
extend this definition to regions.
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42.2 Find the image of the region {(u, v) | 0 ≤ u, v ≤ 1} under
the transformation x = u2 − v2, y = 2uv
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42.3 Jacobian

We can view the change of variables as a parameterisation

r(u, v) = x(u, v)i + y(u, v)j, (u, v) ∈ S,

of the region R in the x-y plane. This can then be used to analyse how the change of
variables affects a double integral over R. To this end, we recall that a double integral
over R arises as the limit of a sum over ‘larger and larger’ families of ‘smaller and
smaller’ patches making up R:∑

patches

f(x∗, y∗) ∆S∗ →
x

R

f(x, y) dS.

Here, ∆S∗ is the area of the patch containing the point (x∗, y∗).
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By working out an approximation of the patch area ∆S∗, and expressing it in terms of
the u, v variables, we thus arrive at the formula

x

R

f(x, y) dx dy =
x

S

f(x(u, v), y(u, v))
∣∣∣∂(x, y)

∂(u, v)

∣∣∣ du dv,
where

∂(x, y)

∂(u, v)
= det


∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.

is called the Jacobian of the transformation T .

Question: Can one always find a variable transformation that maps from a rectangular
or a unit square?

Consider a type I region R,

R = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}.

Set x(u, v) = (1− u)a+ ub, 0 ≤ u ≤ 1

y = (1− v)g1(x) + vg2(x), 0 ≤ v ≤ 1

=⇒ y(u, v) = (1− v)g1((1− u)a+ ub) + vg2((1− u)a+ ub).

What is the Jacobian then?
Because ∂x

∂v
= 0, the corresponding Jacobian is simply given by

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣ b− a 0
? g2((1− u)a+ ub)− g1((1− u)a+ ub)

∣∣∣∣
= (b− a)

[
g2

(
a+ (b− a)u

)
− g1

(
a+ (b− a)u

)]
Of course, a similar change of variables applies if R is of type II.
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42.4 Example: R = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x}
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43 Flux integrals and Gauss’ divergence theorem

By the end of this section, you should be able to answer the following questions:

• What is a flux integral?

• How do you use a flux integral to calculate the flux of a vector field across a
surface?

• What is Gauss’ divergence theorem and under what conditions can it be applied?

• How do you apply Gauss’ divergence theorem?

We have already been introduced to the idea of flux of a variable vector field across
a curve (in R2) and the flux of a constant vector field across rectangular surfaces (in
R3). In this section we look at calculating the flux across smoothly parametric surfaces.

43.1 Orientable surfaces

Let S be a smooth surface. If we can choose a unit vector that is normal to S at every
point so that n varies continuously over S, we call S an orientable surface. The choice
of n provides S with an orientation. There are only ever two possible orientations.

An example of an orientable surface is the surface of a sphere. The two possible
orientations are out of the sphere or into the sphere.

An example of a non-orientable surface is a Möbius strip (see Stewart page 1139).
The orientation of a surface is important when considering flux through that surface.

The orientation we choose is always the direction of positive flux.

43.2 The flux integral

For a vector field v(x, y, z), we are interested in the flux of v across a smooth orientable
parametric surface S in R3, parametrised by r(u, v), with u and v defined over some
domain D. Let n(u, v) be a unit vector normal to the surface S which defines the
orientation of the surface (and hence the direction of positive flux).

It would be most convenient to consider the context of fluid flow with v(x, y, z)
being the velocity of a fluid at the point (x, y, z).
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To calculate the flux through S, we work through the following steps:

1. Partition S into small patches.

2. Approximate each patch by a parallelogram lying in the tangent plane to the
corner of the patch closest to the u-v origin.

3. Approximate the flux through each parallelogram of approximate area ∆S and
add them to give an approximation to the total flux through S.

4. Take the limit as the dimensions of ∆S → 0 to obtain an exact expression for
the flux.

Let’s have a closer look at these steps.

1,2. Steps 1 and 2 are exactly the same as steps 1 and 2 on page 295-296 of our
calculation of surface area.

3. We approximate the flux through one patch by treating v as constant over the
patch (ie. the patch is small enough for this to be a decent approximation). Since
we have already approximated the shape of the patch as a parallelogram, we need
to work out the flux of a constant vector through a parallelogram.

To this end, consider the parallelogram defined by the two (non-parallel) vectors a
and b. If we take the area of the patch to be ∆S, it can be seen from the diagram
below that the flux (volume per unit time if v is velocity) passing through the
parallelogram is

flux across parallelogram ≈ v · n ∆S.

n
v

v  n

a

b S∆

We can take n =
a× b

|a× b|
, and the area of the parallelogram is ||a × b|| ≈ ∆S.

We then have

flux across parallelogram ≈ v · a× b

||a× b||
||a× b|| = v · (a× b).

309



As shown previously, a patch of surface can be approximated by a parallelogram
determined by the two vectors ru∆u and rv∆v. Hence we have

flux across one patch ≈ v · n ∆S = v · (ru × rv)∆u∆v.

Note that we need to check that the vector ru × rv points in the direction of
positive flux. If not, we use rv × ru.

Adding these approximations over the entire surface S, we obtain

flux across S ≈
∑
i

vi · ni ∆Si =
∑
i

v(ui, vi) · (rui × rvi)∆ui∆vi.

4. To obtain an exact expression for the flux across S we take the limit as ∆u,∆v →
0.

flux across S =
x

S

v · n dS =
x

D

v · (ru × rv) du dv.

This expression is called a flux integral and is used to calculate the flux of any vector
field across a smooth orientable surface, not just fluids with a given velocity field.

43.2.1 Calculate the net outward flux of F (x, y, z) = zi + yj + xk across the
surface of the cylindrical solid given by {(x, y, z) | x2 + y2 ≤ 1, 0 ≤
z ≤ 2}.
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43.3 Gauss’ divergence theorem

On page 279 we saw the flux form of Green’s theorem:∮
C

v(x, y) · n dS =
x

D

div(v(x, y)) dA.

The left hand side is essentially a flux integral in two dimensions, with n being an
outwardly pointing unit normal vector to the curve C. The right hand side was derived
from our realisation of the divergence as the “flux density”.

It would be natural to ask if it is possible to extend this result to three dimensions.
Given a vector field in three dimensions, F (x, y, z), we have seen that the net

outward flux across a closed, smooth, orientable surface S is given by
{

S

F · n dS,

where n is an outwardly pointing unit normal.
We have also seen that its divergence (divF ) can be viewed as the flux density, so

divF = lim
∆V→0

flux of F out of ∆V

∆V
.

Hence we expect to be able to calculate the net outward flux across a closed, smooth,
orientable surface S as the triple integral of the flux density (ie. divF ) over the volume
enclosed by S.

Indeed, this is true, with F and S subject to certain conditions. The result is
known as Gauss’ divergence theorem:

Let S be a piecewise smooth, orientable, closed surface enclosing a region V in
R3. Let F (x, y, z) be a vector field whose component functions are continuous
and have continuous partial derivatives in V . Then

{

S

F · n dS =
y

V

div(F )dV,

where n is the outwardly directed unit normal to S.

This theorem connects the flux of a vector field out of a volume with the flux
through its surface. It says that we can calculate the net outward flux either as a
closed surface integral, or as a triple integral.
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43.3.1 Use Gauss’ divergence theorem to calculate the net outward flux
of F (x, y, z) = zi + yj + xk across the surface of the cylindrical solid
given by {(x, y, z) | x2 + y2 ≤ 1, 0 ≤ z ≤ 2}.
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44 On proving Gauss’ divergence theorem

Recall triple integrals: 6 possible orders of integration, categorise into 3 depending on
the inner variable i.e.

1.
x

Dxy

(∫ h(x,y)

g(x,y)

f(x, y, z)dz

)
dAxy

2.
x

Dxz

(∫ h(x,z)

g(x,z)

f(x, y, z)dy

)
dAxz

3.
x

Dyz

(∫ h(y,z)

g(y,z)

f(x, y, z)dx

)
dAyz

44.1 Special case proof
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Recall the integral identity stated in Gauss’ Divergence Theorem:
y

R

∇ · FdV =
{

∂R

F · n dS,

where ∂R denotes boundary of R and n is the outward unit normal vector of ∂R.

Note: Writing F = F1i + F2j + F3k, we have

Here we prove the theorem in the case R can be represented as either a type 1, 2, or 3
region in R3. This is a special case proof on building block regions in R3. See Stewart
(7 ed) page 1153.

We intend to equate the following terms

y

R

∂F1

∂x
dV =

{

∂R

F1 i · n dS,

y

R

∂F2

∂y
dV =

{

∂R

F2 j · n dS,

y

R

∂F3

∂z
dV =

{

∂R

F3 k · n dS.
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45 Curl of a vector field

By the end of this section, you should be able to answer the following questions:

• How do you calculate the curl of a given vector field?

• What is the significance of curl?

• How do you test whether or not a given three dimensional vector field is conser-
vative?

45.1 Calculating curl

If (x, y, z) is a right handed Cartesian coordinate system and v(x, y, z) = v1i+v2j+v3k
is a differentiable vector field, then define

curl(v) = ∇× v =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

∣∣∣∣∣∣
=

(
∂v3

∂y
− ∂v2

∂z

)
i +

(
∂v1

∂z
− ∂v3

∂x

)
j +

(
∂v2

∂x
− ∂v1

∂y

)
k.

Note that curl(v) is a vector field.

45.1.1 Example: let v = yz2i + zx2j + xy2k. Find curl(v).
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45.2 Understanding curl

For the rotation of a rigid body about a fixed axis with angular velocity w, the velocity
at a point P , whose position vector is r, is given by v = w × r.

If we choose the axis of rotation to be the z-axis, then w = ωk. Calculate curl(v).

In general, curl(v) characterises the rotation of a vector field. We will investigate
this further in the next section.
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45.3 Conservative fields revisited

It turns out that the curl of a vector field is exactly what we need to generalise the
result at the bottom of page 254 to three dimensions.

Show that if F is a conservative vector field, then curlF = 0.

Indeed, the diagram on page 254 that outlines our logic can be extended directly
to the three dimensional case. The only difference is the condition which will serve as
our test for conservative fields, namely curlF = 0.
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The proofs of the links in the diagram for the three dimensional case below are very
similar to those used in the two dimensional case. The only detail that is significantly

different is showing that if curlF = 0 then

∮
C

F · dr = 0. Note also that F must be a

vector field defined everywhere in R3 with continuous partial derivatives. The proof of
that part of the diagram requires a generalisation of Green’s theorem known as Stokes’
theorem, which we will investigate in the next section.

F conservative

''OO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OO

∫
C

F · dr path independent

66nnnnnnnnnnnnnnnnnnnnnnnnnnn
wwooo

ooo
ooo

ooo
ooo

ooo
ooo

ooo
oo

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T
iiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

curlF = 0

xxqqq
qqq

qqq
qqq

qqq
qqq

qqq
qqq

qqq

∮
C

F · dr = 0, ∀ closed C

The main consequence of this diagram is that we have the following test for a conser-
vative vector field in three dimensions:

A vector field F is conservative if and only if curlF = 0.

45.3.1 Determine whether or not the vector field F = (1+yz)i+(1+xz)j+xyk
is conservative.
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46 Stokes’ theorem

By the end of this section, you should be able to answer the following questions:

• What is Stokes’ theorem and under what conditions can it be applied?

• How do you apply Stokes’ theorem?

• What is the circulation of a vector field?

46.1 Summary of surfaces and curves

Here we summarise the different types of curves and surfaces which we need to under-
stand Stokes’ theorem. Although most of these definitions have already been given,
you may find it useful to have all of this information in one place so you can review at
a glance.

46.1.1 Surfaces

• Smooth: the surface normal vector depends continuously on the points on the
surface.

• Piecewise smooth: the surface consists of finitely many smooth surfaces intersect-
ing only at their boundaries.

• Oriented (or orientable): the direction of the positive normal vector can be contin-
ued uniquely and continuously across the whole surface (especially if the surface
is piecewise smooth).

46.1.2 Curves

• Smooth: the tangent at each point on the curve is unique and varies continuously.

• Piecewise smooth: the curve consists of finitely many smooth curves.

• Simple: the curve never intersects itself anywhere between its endpoints.
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46.2 Stokes’ theorem

Let S be a piecewise smooth, orientable surface in R3 and let the boundary of
S be a piecewise smooth, simple, closed curve C. Let F (x, y, z) be a contin-
uous vector function with continuous first partial derivatives in some domain
containing S. Then

x

S

(curlF ) · n dA =

∮
C

F · dr,

where n is a unit normal vector of S, and the integration around C is taken
in the direction using the “right hand rule” with n.

46.2.1 Relation to Green’s theorem

Recall Green’s theorem in the plane. It relates a line integral on a boundary to a double
integral over a region in the plane. Roughly speaking, Stokes’ theorem is a 3-D version
of this: it relates a surface integral on a piece of surface (in 3-D) to a line integral on
the boundary of the surface.

In fact, note that if the surface is in the x-y plane with n = k, Stokes’ theorem

reduces to Green’s theorem, since the k component of curlF is just
∂F2

∂x
− ∂F1

∂y
.

46.2.2 Verify Stokes’ theorem where C is the curve of intersection of the
plane y+z = 2 and the cylinder x2+y2 = 1, oriented counterclockwise
when looking from above, and F = [−y2, x, z2].
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46.3 Further reading: Circulation

Let v represent the velocity field of a fluid and C is a piecewise smooth, simple, closed
curve. We have ∮

C

v · dr =

∮
C

v · T dS,

where T is a unit tangent vector in the direction of the orientation of the curve. The
dot product v ·T is the component of v in the direction of T (and hence the curve), so

we can interpret

∮
C

v · T dS as a measure of the tendency of the fluid to move around

the curve C. We call this quantity the circulation of v around C.
Now define a small circle Ca of radius a about a point P0, such that the disc Sa

enclosed by Ca is normal to the vector n(P0). Our aim here is to better understand
curlv.

Since curlv is continuous, we approximate curlv over Sa as curlv(P0). Stokes the-
orem then gives us ∮

Ca

v · dr =
x

Sa

curlv · n dS

≈
x

Sa

curlv(P0) · n(P0) dS

= curlv(P0) · n(P0)
x

Sa

dS

= curlv(P0) · n(P0)(πa2)

⇒ curlv(P0) · n(P0) ≈ 1

πa2

∮
Ca

v · dr

≈ circulation around disc

area of disc
.

This approximation improves as a→ 0. Indeed

curlv(P0) · n(P0) = lim
a→0

1

πa2

∮
Ca

v · dr.

Note that this has a maximum value when curlv(P0) and n(P0) have the same direction.
In particular, if we take n(P0) to be each of the coordinate unit vectors i, j, k, we

have the following: The i, j, k components of curlv(P0) give the circulation density
at P0 in planes normal to each of the i, j, k respectively. The magnitude of curlv(P0)
gives the maximum circulation density about P0 in a plane normal to curlv(P0).
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46.4 Further reading: Curl fields and vector potentials

One immediate consequence is that if there are two different surfaces S1 and S2 satis-
fying the criteria of Stokes’ theorem, both with the same boundary curve C, then

x

S1

curlF · n1 dS =

∮
C

F · dr =
x

S2

curlF · n2 dS.

We have that if S is a closed surface satisfying all of the other criteria of Stokes’
theorem, and if we define C to be any closed curve lying on S, so that S1 and S2 are
two open surfaces whose union makes up S and whose common boundary is C, then

{

S

curlF · n dS =
x

S1

curlF · n1 dS +
x

S2

curlF · n2 dS

=

∮
C

F · dr +

∮
−C

F · dr

=

∮
C

F · dr −
∮
C

F · dr = 0,

since the orientation of C as a boundary to S1 will be in the opposite direction to that
of S2.

Let F be a vector field satisfying F = curlG for some vector field G. We call F a
curl field and G a corresponding vector potential.

The above result says that the net outward flux of a curl field across any closed
surface is zero.

We can verify that div(curlG) = 0 for any vector field G. Consequently we should
not be too surprised by the above result, since Gauss’ divergence theorem says that

{

S

(curlG) · n dS =
y

V

div(curlG) dV = 0.

In fact, it turns out that we have the following test for curl fields:
Let F be a vector field whose components and their partial derivatives are contin-

uous. If every closed surface in the domain of F only encloses points which are also
in the domain of F , and if divF = 0, then there exists some G such that F = curlG.
That is, F is a curl field.
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