Assignment Number 2

Problem 1 (2 points) Determine the Möbius transformation (viewed as a mapping on $\overline{\mathbb{C}}$) mapping 2 to 0, *i* to ∞ , and 0 to -2i.

Problem 2 (4 points) Let T be a mapping from Ω , a subset of \mathbb{C} , to \mathbb{C} . A fixed point of T is a point z satisfying T(z) = z.

a) Show: any Möbius transformation, apart from the identity, can have at most 2 fixed points in \mathbb{C} . (The identity is the transformation $z \mapsto z$).

b) Give examples of Möbius transformations having (i) 2; (ii) 1 and (iii) no fixed points in \mathbb{C} .

Problem 3 (2 points) For $z \in \mathbb{C}$, show: a) $\sin \overline{z} = \overline{\sin z}$; b) $\cosh \overline{z} = \overline{\cosh z}$

Problem 4 (3 points) Find all solutions $z \in \mathbb{C}$ of the following (express your answers in the form x + iy): **a)** $\log z = 4i$; **b)** $z^i = i$.

Problem 5 (5 points) a) Prove that $\cot^{-1} z = \frac{-i}{2} \log \left(\frac{z+i}{z-i} \right)$, and note any restrictions on your domain. b) Find all solutions $z \in \mathbb{C}$ of $\cot z = 1$ (express them in the form x + iy).

Problem 6 (4 points) Let Ω_1 and Ω_2 be nonempty, closed sets in \mathbb{C} . **a)** Show that the set $\Omega_1 \cup \Omega_2$ is closed. **b)** If instead Ω_2 is nonempty and open: (i) could $\Omega_1 \cup \Omega_2$ still be closed? (ii) Need it be closed? Give proofs or examples/counterexamples.

Due: 2:00 P.M., Friday, 22/03/2024.

Current assignments will be available at http://www.maths.uq.edu.au/courses/MATH3401/Tutorials.html