MATH3401/3901: Complex
 Analysis/Advanced Complex Analysis

Assignment Number 2

Problem 1 (2 points) Determine the Möbius transformation (viewed as a mapping on $\overline{\mathbb{C}}$) mapping 2 to $0, i$ to ∞, and 0 to $-2 i$.

Problem 2 (4 points) Let T be a mapping from Ω, a subset of \mathbb{C}, to \mathbb{C}. A fixed point of T is a point z satisfying $T(z)=z$.
a) Show: any Möbius transformation, apart from the identity, can have at most 2 fixed points in \mathbb{C}. (The identity is the transformation $z \mapsto z$).
b) Give examples of Möbius transformations having (i) 2; (ii) 1 and (iii) no fixed points in \mathbb{C}.

Problem 3 (2 points) For $z \in \mathbb{C}$, show:
a) $\sin \bar{z}=\overline{\sin z}$;
b) $\cosh \bar{z}=\overline{\cosh z}$

Problem 4 (3 points) Find all solutions $z \in \mathbb{C}$ of the following (express your answers in the form $x+i y)$:
а) $\log z=4 i$;
b) $z^{i}=i$.

Problem 5 (5 points)
a) Prove that $\cot ^{-1} z=\frac{-i}{2} \log \left(\frac{z+i}{z-i}\right)$, and note any restrictions on your domain.
b) Find all solutions $z \in \mathbb{C}$ of $\cot z=1$ (express them in the form $x+i y$).

Problem 6 (4 points) Let Ω_{1} and Ω_{2} be nonempty, closed sets in \mathbb{C}.
a) Show that the set $\Omega_{1} \cup \Omega_{2}$ is closed.
b) If instead Ω_{2} is nonempty and open:
(i) could $\Omega_{1} \cup \Omega_{2}$ still be closed?
(ii) Need it be closed?

Give proofs or examples/counterexamples.
Due: 2:00 P.M., Friday, 22/03/2024.
Current assignments will be available at
http://www.maths.uq.edu.au/courses/MATH3401/Tutorials.html

