Assignment Number 3

Problem 1 (6 points) Show the following limits:

a)
$$\lim_{z \to \infty} \frac{4z^5}{z^5 - 42z} = 4;$$
 b) $\lim_{z \to \infty} \frac{z^4}{z^2 + 42z} = \infty;$

b)
$$\lim_{z \to \infty} \frac{z^4}{z^2 + 42z} = \infty;$$

c)
$$\lim_{z\to\infty} \frac{(az+b)^3}{(cz+d)^3} = \frac{a^3}{c^3}$$
 if $a,b,c,d\in\mathbb{C},c\neq0$.

Problem 2 (3 points) Show that the following functions are defined on all of \mathbb{C} , but are nowhere analytic (here z = x + iy):

a)
$$z \mapsto 2xy + i(x^2 + y^2)$$
 b) $z \mapsto e^y e^{ix}$.

b)
$$z \mapsto e^y e^{ix}$$
.

Problem 3 (4 points) Determine where the function $z \mapsto x^3 + i(1-y)^3$ is:

a) analytic;

b) differentiable (here z = x + iy).

Problem 4 (3 points) For z = x + iy, define $f(z) = \sqrt{|xy|}$.

- a) Show that f satisfies the Cauchy-Riemann equations at the origin. (Note: you will need to use the definition of the partial derivative to calculate $u_x(0,0)$ and $u_y(0,0)$.
- b) Show that f is not differentiable at the origin. (Hint: approach on a suitable line).
- c) Explain why this doesn't contradict any of the results from class.

Problem 5 (4 points)

- (a) Define precisely what it means for a curve in \mathbb{C} to be *rectifiable*.
- (b) Give an example of a non-rectifiable curve in C. You don't have to prove it is nonrectifiable.

Note: you will need to provide at least one reference, properly cited. This is not allowed to be wikipedia.

Problem 6 (2 bonus points) Consider sequences defined as follows:

$$x_0 = 0$$
, $x_1 = x_2 = 1$, $x_3 = x_4 = 1 - \frac{1}{2}$, $x_5 = x_6 = 1 - \frac{1}{2} + \frac{1}{4}$, \cdots and $y_0 = y_1 = 0$, $y_2 = y_3 = 1$, $y_4 = y_5 = 1 - \frac{1}{2}$, $y_6 = y_7 = 1 - \frac{1}{2} + \frac{1}{4}$, \cdots .

Set $z_n = x_n + iy_n$, and define I_n to be the closed line segment (i.e., including end-points) from z_n to z_{n+1} , for $n \in \mathbb{N}_0$. Finally, set:

$$\Omega = \bigcup_{n=0}^{\infty} I_n$$
, and $\Lambda = \Omega \cup \{\frac{2}{3} + \frac{2}{3}i\}$.

- a) Show that Λ is connected. (A sketch is not a proof, but could be helpful in fixing ideas.)
- b) Show that Λ is not piecewise affinely path connected, in the sense defined in class (Lecture 12).
- c) Do these results contradict anything from class? Explain.

Due: 2:00PM, Friday, 26/04/2024

Current assignments will be available at

http://www.maths.uq.edu.au/courses/MATH3401/Tutorials.html