# SCHOOL OF MATHEMATICS AND PHYSICS <br> MATH3401 <br> Tutorial Worksheet 

Semester 1, 2024, Week 3
(1) Find the principal argument $\operatorname{Arg} z$ when
(a) $z=\frac{i}{-2-2 i}$;
(b) $z=(\sqrt{3}-i)^{6}$.

Solution. (a) Since

$$
\arg \left(\frac{i}{-2-2 i}\right)=\arg i-\arg (-2-2 i),
$$

one value of $\arg \left(\frac{i}{-2-2 i}\right)$ is

$$
\frac{\pi}{2}-\left(-\frac{3 \pi}{4}\right), \quad \text { or } \quad \frac{5 \pi}{4}
$$

Hence the principal value is

$$
\frac{5 \pi}{4}-2 \pi, \quad \text { or } \quad-\frac{3 \pi}{4}
$$

(b) Now, since

$$
\arg (\sqrt{3}-i)^{6}=6 \arg (\sqrt{3}-i)
$$

one value of $\arg (\sqrt{3}-i)^{6}$ is

$$
6\left(-\frac{\pi}{6}\right) ; \quad \text { or } \quad-\pi
$$

So the principal value is $-\pi+2 \pi=\pi$.
(2) In each case, find all the roots in rectangular coordinates:
(a) $(-16)^{1 / 4}$;
(b) $(-1)^{1 / 3}$.

Solution. (a) Since $-16=16 \exp [i(\pi+2 k \pi)]$ with $k=0, \pm 1, \pm 2, \ldots$, the roots are

$$
(-16)^{1 / 4}=2 \exp \left[i\left(\frac{\pi}{4}+\frac{k \pi}{2}\right)\right] \quad k=0,1,2,3
$$

Thus, for $k=0$ we have the first root

$$
c_{0}=2 e^{i \pi / 4}=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)=\sqrt{2}(1+i)
$$

This is know as the principal root. The other three roots are

$$
\begin{aligned}
c_{1} & =-\sqrt{2}(1-i) \\
c_{2} & =-\sqrt{2}(1+i) \\
c_{3} & =\sqrt{2}(1-i) .
\end{aligned}
$$

(b) By writing $-1=1 \exp [i(\pi+2 k \pi)]$ with $k=0, \pm 1, \pm 2, \ldots$, we see that

$$
(-1)^{1 / 3}=\exp \left[i\left(\frac{\pi}{3}+\frac{2 k \pi}{3}\right)\right] \quad k=0,1,2
$$

The principal root is

$$
c_{0}=e^{i \pi / 3}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}=\frac{1+\sqrt{3} i}{2}
$$

The other roots are

$$
\begin{gathered}
c_{1}=e^{i \pi}=-1 \\
c_{2}=e^{i 5 \pi / 3}=e^{i 2 \pi} e^{-i \pi / 3}=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}=\frac{1-\sqrt{3} i}{2} .
\end{gathered}
$$

(3) Find the Möbius transformation that maps the points

$$
z_{1}=\infty, \quad z_{2}=i, \quad z_{3}=0
$$

onto the points

$$
w_{1}=0, \quad w_{2}=i, \quad w_{3}=\infty
$$

Solution. We need to find the values $a, b, c$ and $d$ in

$$
T(z)=\frac{a z+b}{c z+d}, \text { with } a d-b c \neq 0
$$

Since $T(\infty)=0$, then

$$
\frac{a}{c}=0 \Longrightarrow a=0 \quad(c \neq 0)
$$

Now, since $T(0)=\infty$, then

$$
\frac{-d}{c}=0 \Longrightarrow d=0 \quad(c \neq 0)
$$

Finally, since $T(i)=i$, we have

$$
\frac{a i+b}{c i+d}=i
$$

Using previous values, we obtain

$$
\frac{b}{c i}=i \Longrightarrow b=i^{2} c=-c
$$

Hence, the general Möbius transformation is

$$
T(z)=\frac{-c}{c z}
$$

In particular, for $c=1$ we have

$$
T(z)=-\frac{1}{z}
$$

(4) Find the Möbius transformation that maps the points

$$
z_{1}=-1, \quad z_{2}=\infty, \quad z_{3}=i
$$

onto the points

$$
w_{1}=\infty, \quad w_{2}=i, \quad w_{3}=1
$$

Solution. Since $T(\infty)=i$, then

$$
\frac{a}{c}=i \Longrightarrow a=i c \Longrightarrow a i=-c \quad(c \neq 0)
$$

Now, since $T(-1)=\infty$, then

$$
\frac{-d}{c}=-1 \Longrightarrow d=c \quad(c \neq 0)
$$

Finally, since $T(i)=1$, we have

$$
\frac{a i+b}{c i+d}=1
$$

Using previous values, we obtain

$$
\frac{-c+b}{c i+c}=1 \Longrightarrow b-c=c(i+1) \Longrightarrow b=c(i+2)
$$

Hence, the general Möbius transformation is

$$
T(z)=\frac{i c z+c(i+2)}{c z+c}
$$

In particular, for $c=1$ we have

$$
T(z)=\frac{i z+(i+2)}{z+1}
$$

