SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401
Tutorial Worksheet
Semester 1, 2024, Week 4
(1) Find all values of z such that
(a) $e^{z}=-2$;
(b) $e^{z}=1+\sqrt{3}$.

Solution. (a) Write $e^{z}=-2$ as $e^{x} e^{i y}=2 e^{i \pi}$. This means that

$$
e^{x}=2 \quad \text { and } \quad y=\pi+2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots) .
$$

That is,

$$
x=\ln 2 \quad \text { and } \quad y=(2 n+1) \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Therefore

$$
z=\ln 2+(2 n+1) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

(b) Write $e^{z}=1+\sqrt{3}$ as $e^{x} e^{i y}=(1+\sqrt{3}) e^{i \cdot 0}$, from which we deduce that

$$
e^{x}=1+\sqrt{3} \quad \text { and } \quad y=2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

That is,

$$
x=\ln (1+\sqrt{3}) \quad \text { and } \quad y=2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Consequently,

$$
z=\ln (1+\sqrt{3})+2 n \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

(2) Show that $\overline{\exp (i z)}=\exp (i \bar{z})$ if and only if $z=n \pi,(n=0, \pm 1, \pm 2, \ldots)$.

Solution. We can solve this problem by finding all the roots of the equation

$$
\overline{\exp (i z)}=\exp (i \bar{z})
$$

Set $z=x+i y$ and rewrite the equation as

$$
e^{-y} e^{-i x}=e^{y} e^{i x}
$$

Now, recall that two nonzero complex numbers

$$
z_{1}=r_{1} e^{i \theta_{1}} \quad \text { and } \quad z_{2}=r_{2} e^{i \theta_{2}}
$$

are equal if and only if

$$
r_{1}=r_{2} \quad \text { and } \quad \theta_{1}=\theta_{2}+2 n \pi
$$

where $n=0, \pm 1, \pm 2, \ldots$ Thus

$$
e^{-y}=e^{y} \quad \text { and } \quad-x=x+2 n \pi,
$$

where $n=0, \pm 1, \pm 2, \ldots$ Then

$$
y=0 \quad \text { and } \quad x=n \pi \quad(n=0, \pm 1, \pm 2, \ldots) .
$$

The roots of the original equation are, therefore, $z=n \pi$ where $n=0, \pm 1, \pm 2, \ldots$.
(3) Show that
(a) $\log (1+i)^{2}=2 \log (1+i)$;
(b) $\log (-1+i)^{2} \neq 2 \log (-1+i)$.

Solution. (a) Notice that

$$
\log (1+i)^{2}=\log (2 i)=\ln 2+\frac{\pi}{2} i
$$

and

$$
2 \log (1+i)=2\left(\ln \sqrt{2}+i \frac{\pi}{4}\right)=\ln 2+\frac{\pi}{2} i
$$

Thus

$$
\log (1+i)^{2}=2 \log (1+i)
$$

(b) For the second part, we have

$$
\log (-1+i)^{2}=\log (-2 i)=\ln 2-\frac{\pi}{2} i
$$

and

$$
2 \log (-1+i)=2\left(\ln \sqrt{2}+i \frac{3 \pi}{4}\right)=\ln 2+\frac{3 \pi}{2} i
$$

Hence

$$
\log (-1+i)^{2} \neq 2 \log (-1+i)
$$

(4) Show that
(a) the set of values of $\log \left(i^{1 / 2}\right)$ is

$$
\left(n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

(b) the set of values of $\log \left(i^{2}\right)$ is not the same as the set of values of $2 \log i$.

Solution. (a) The two values of $i^{1 / 2}$ are $e^{i \pi / 4}$ and $e^{i 5 \pi / 4}$. Observe that

$$
\log \left(e^{i \pi / 4}\right)=\ln 1+i\left(\frac{\pi}{4}+2 n \pi\right)=\left(2 n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

and

$$
\log \left(e^{i 5 \pi / 4}\right)=\ln 1+i\left(\frac{5 \pi}{4}+2 n \pi\right)=\left[(2 n+1)+\frac{1}{4}\right] \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Combining these two sets of values, we obtain

$$
\log \left(i^{1 / 2}\right)=\left(n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Notice also that

$$
\frac{1}{2} \log i=\frac{1}{2}\left[\ln 1+i\left(\frac{\pi}{2}+2 n \pi\right)\right]=\left(n+\frac{1}{4}\right) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Thus the set of values of $\log \left(i^{1 / 2}\right)$ is the same as the set of values of $\frac{1}{2} \log i$, and thus we can write

$$
\log \left(i^{1 / 2}\right)=\frac{1}{2} \log i
$$

(b) Notice that

$$
\log \left(i^{2}\right)=\log (-1)=\ln 1+(\pi+2 n \pi) i=(2 n+1) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

On the other hand we have

$$
2 \log i=2\left[\ln 1+i\left(\frac{\pi}{2}+2 n \pi\right)\right]=(4 n+1) \pi i \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Therefore, the set of values of $\log \left(i^{2}\right)$ is not the same as the set of values of $2 \log i$. In other words, $\log \left(i^{2}\right) \neq 2 \log i$.
(5) Use the definition

$$
z^{c}=\exp (c \log z) \quad z \neq 0
$$

to show that $(-1+\sqrt{3} i)^{3 / 2}= \pm 2 \sqrt{2}$.
Solution. Since $-1+\sqrt{3} i=2 e^{2 \pi / 3}$, we have that

$$
\begin{aligned}
(-1+\sqrt{3} i)^{3 / 2} & =\exp \left[\frac{3}{2} \log (-1+\sqrt{3} i)\right]=\exp \left\{\frac{3}{2}\left[\ln 2+i\left(\frac{2 \pi}{3}+2 n \pi\right)\right]\right\} \\
& =\exp \left[\ln \left(2^{3 / 2}\right)+(3 n+1) \pi i\right]=2 \sqrt{2} \exp [(3 n+1) \pi i]
\end{aligned}
$$

where $n=0, \pm 1, \pm 2, \ldots$
Now, observe that if n is even, then $3 n+1$ is odd; and so $\exp [(3 n+1) \pi i]=-1$. On the other hand, if n is odd, $3 n+1$ is even; and this means that $\exp [(3 n+1) \pi i]=1$. So we obtained only two distinct values of $(-1+\sqrt{3} i)^{3 / 2}$. Specifically,

$$
(-1+\sqrt{3} i)^{3 / 2}= \pm 2 \sqrt{2}
$$

