SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401 Tutorial Worksheet Semester 1, 2024, Week 4

(1) Find all values of z such that

- (a) $e^z = -2;$
- (b) $e^z = 1 + \sqrt{3}$.

Solution. (a) Write $e^z = -2$ as $e^x e^{iy} = 2e^{i\pi}$. This means that

$$e^x = 2$$
 and $y = \pi + 2n\pi$ $(n = 0, \pm 1, \pm 2, ...).$

That is,

$$x = \ln 2$$
 and $y = (2n+1)\pi$ $(n = 0, \pm 1, \pm 2, ...).$

Therefore

$$z = \ln 2 + (2n+1)\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$

(b) Write $e^z = 1 + \sqrt{3}$ as $e^x e^{iy} = (1 + \sqrt{3}) e^{i \cdot 0}$, from which we deduce that

$$e^x = 1 + \sqrt{3}$$
 and $y = 2n\pi$ $(n = 0, \pm 1, \pm 2, ...).$

That is,

$$x = \ln(1 + \sqrt{3})$$
 and $y = 2n\pi$ $(n = 0, \pm 1, \pm 2, ...).$

Consequently,

$$z = \ln\left(1 + \sqrt{3}\right) + 2n\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$

(2) Show that $\overline{\exp(iz)} = \exp(i\overline{z})$ if and only if $z = n\pi$, $(n = 0, \pm 1, \pm 2, ...)$.

Solution. We can solve this problem by finding all the roots of the equation

$$\overline{\exp(iz)} = \exp(i\overline{z}).$$

Set z = x + iy and rewrite the equation as

$$e^{-y}e^{-ix} = e^y e^{ix}.$$

Now, recall that two nonzero complex numbers

$$z_1 = r_1 e^{i\theta_1} \quad \text{and} \quad z_2 = r_2 e^{i\theta_2}$$

are equal if and only if

$$r_1 = r_2$$
 and $\theta_1 = \theta_2 + 2n\pi$,

where $n = 0, \pm 1, \pm 2, ...$ Thus

$$e^{-y} = e^y$$
 and $-x = x + 2n\pi$,

where $n = 0, \pm 1, \pm 2, ...$ Then

$$y = 0$$
 and $x = n\pi$ $(n = 0, \pm 1, \pm 2, ...).$

The roots of the original equation are, therefore, $z = n\pi$ where $n = 0, \pm 1, \pm 2, \ldots$

(3) Show that

- (a) Log $(1+i)^2 = 2 \text{Log } (1+i);$
- (b) Log $(-1+i)^2 \neq 2 \text{Log} (-1+i)$.

Solution. (a) Notice that

Log
$$(1+i)^2$$
 = Log $(2i) = \ln 2 + \frac{\pi}{2}i$

and

2Log
$$(1+i) = 2\left(\ln\sqrt{2} + i\frac{\pi}{4}\right) = \ln 2 + \frac{\pi}{2}i.$$

Thus

$$Log (1+i)^2 = 2 Log (1+i).$$

(b) For the second part, we have

Log
$$(-1+i)^2$$
 = Log $(-2i) = \ln 2 - \frac{\pi}{2}i$

and

$$2 \operatorname{Log} (-1+i) = 2 \left(\ln \sqrt{2} + i \frac{3\pi}{4} \right) = \ln 2 + \frac{3\pi}{2}i.$$

Hence

$$\operatorname{Log} (-1+i)^2 \neq 2 \operatorname{Log} (-1+i)$$

(4) Show that

(a) the set of values of $\log(i^{1/2})$ is

$$\left(n+\frac{1}{4}\right)\pi i$$
 $(n=0,\pm 1,\pm 2,\ldots);$

(b) the set of values of $\log(i^2)$ is *not* the same as the set of values of $2\log i$.

Solution. (a) The two values of $i^{1/2}$ are $e^{i\pi/4}$ and $e^{i5\pi/4}$. Observe that

$$\log(e^{i\pi/4}) = \ln 1 + i\left(\frac{\pi}{4} + 2n\pi\right) = \left(2n + \frac{1}{4}\right)\pi i \qquad (n = 0, \pm 1, \pm 2, \ldots)$$

and

$$\log\left(e^{i5\pi/4}\right) = \ln 1 + i\left(\frac{5\pi}{4} + 2n\pi\right) = \left[(2n+1) + \frac{1}{4}\right]\pi i \qquad (n = 0, \pm 1, \pm 2, \ldots).$$

Combining these two sets of values, we obtain

$$\log(i^{1/2}) = \left(n + \frac{1}{4}\right)\pi i$$
 $(n = 0, \pm 1, \pm 2, ...).$

Notice also that

$$\frac{1}{2}\log i = \frac{1}{2}\left[\ln 1 + i\left(\frac{\pi}{2} + 2n\pi\right)\right] = \left(n + \frac{1}{4}\right)\pi i \qquad (n = 0, \pm 1, \pm 2, \ldots).$$

Thus the set of values of $\log(i^{1/2})$ is the same as the set of values of $\frac{1}{2}\log i$, and thus we can write

$$\log\left(i^{1/2}\right) = \frac{1}{2}\log i.$$

(b) Notice that

$$\log(i^2) = \log(-1) = \ln 1 + (\pi + 2n\pi)i = (2n+1)\pi i \qquad (n = 0, \pm 1, \pm 2, \ldots)$$

On the other hand we have

$$2\log i = 2\left[\ln 1 + i\left(\frac{\pi}{2} + 2n\pi\right)\right] = (4n+1)\pi i \qquad (n = 0, \pm 1, \pm 2, \ldots).$$

Therefore, the set of values of $\log(i^2)$ is not the same as the set of values of $2\log i$. In other words, $\log(i^2) \neq 2\log i$.

(5) Use the definition

$$z^c = \exp\left(c\log z\right) \qquad z \neq 0,$$

to show that $(-1 + \sqrt{3}i)^{3/2} = \pm 2\sqrt{2}$.

Solution. Since $-1 + \sqrt{3}i = 2e^{2\pi/3}$, we have that

$$\left(-1 + \sqrt{3}i \right)^{3/2} = \exp\left[\frac{3}{2} \log(-1 + \sqrt{3}i) \right] = \exp\left\{ \frac{3}{2} \left[\ln 2 + i \left(\frac{2\pi}{3} + 2n\pi \right) \right] \right\}$$

=
$$\exp\left[\ln \left(2^{3/2} \right) + (3n+1)\pi i \right] = 2\sqrt{2} \exp\left[(3n+1)\pi i \right],$$

where $n = 0, \pm 1, \pm 2, ...$

Now, observe that if n is even, then 3n + 1 is odd; and so $\exp[(3n + 1)\pi i] = -1$. On the other hand, if n is odd, 3n + 1 is even; and this means that $\exp[(3n + 1)\pi i] = 1$. So we obtained only two distinct values of $(-1 + \sqrt{3}i)^{3/2}$. Specifically,

$$\left(-1 + \sqrt{3}i\right)^{3/2} = \pm 2\sqrt{2}.$$