SCHOOL OF MATHEMATICS AND PHYSICS
 MATH3401
 Tutorial Worksheet
 Semester 1, 2024, Week 5

(1) Show that the limit of the function

$$
f(z)=\left(\frac{z}{\bar{z}}\right)^{2}
$$

as z tends to 0 does not exist.
Hint: Do this letting nonzero points $z=(x, 0)$ and $z=(x, x)$ approach the origin.
Solution. Consider the function

$$
f(z)=\left(\frac{z}{\bar{z}}\right)^{2}=\left(\frac{x+i y}{x-i y}\right)^{2} \quad(z \neq 0)
$$

where $z=x+i y$. Observe that if $z=(x, 0)$, then

$$
f(z)=\left(\frac{x+i 0}{x-i 0}\right)^{2}=1
$$

and if $z=(0, y)$

$$
f(z)=\left(\frac{0+i y}{0-i y}\right)^{2}=1
$$

However, if $z=(x, x)$,

$$
f(z)=\left(\frac{x+i x}{x-i x}\right)^{2}=i^{2}=-1
$$

This shows that $f(z)$ has value 1 at all nonzero points on the real and imaginary axes but value -1 at all nonzero points on the line $y=x$. Thus the limit of $f(z)$ as z tends to 0 cannot exist.
(2) Find $f^{\prime}(z)$ when
(a) $f(z)=\frac{z-1}{2 z+1},(z \neq-1 / 2)$;
(b) $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}},(z \neq 0)$.

Solution. (a) If $f(z)=\frac{z-1}{2 z+1},(z \neq-1 / 2)$, then

$$
\begin{aligned}
f^{\prime}(z) & =\frac{(2 z+1) \frac{d}{d z}(z-1)-(z-1) \frac{d}{d z}(2 z+1)}{(2 z+1)^{2}} \\
& =\frac{3}{(2 z+1)^{2}}
\end{aligned}
$$

(b) If $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}},(z \neq 0)$, then

$$
\begin{aligned}
f^{\prime}(z) & =\frac{z^{2} \frac{d}{d z}\left(1+z^{2}\right)^{4}-\left(1+z^{2}\right)^{4} \frac{d}{d z} z^{2}}{\left(z^{2}\right)^{2}} \\
& =\frac{z^{2} 4\left(1+z^{2}\right)^{3}(2 z)-\left(1+z^{2}\right)^{4} 2 z}{z^{4}} \\
& =\frac{2\left(1+z^{2}\right)^{3}\left(3 z^{2}-1\right)}{z^{3}}
\end{aligned}
$$

(3) Determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=\frac{1}{z}$;
(b) $f(z)=x^{2}+i y^{2}$.
(c) $f(z)=z \operatorname{Im}(z)$.

Solution. (a) $f(z)=\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}$. Thus

$$
u=\frac{x}{x^{2}+y^{2}} \text { and } v=\frac{-y}{x^{2}+y^{2}}
$$

are defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$ (they are rational polynomial functions). So we have

$$
u_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad u_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

and

$$
v_{x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \quad v_{y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

The first-order partial derivatives of the functions u and v with respect to x and y exist everywhere except at $(0,0)$; they are also continuous and satisfy Cauchy-Riemann equations:

$$
u_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=v_{y} \text { and } u_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-v_{x}, \quad\left(x^{2}+y^{2} \neq 0\right)
$$

Hence $f^{\prime}(z)$ exists when $z \neq 0$. Moreover, when $z \neq 0$, we have

$$
\begin{aligned}
f^{\prime}(z) & =u_{x}+i v_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+i \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-\frac{x^{2}-i 2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{(x-i y)^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-\frac{(\bar{z})^{2}}{(z \bar{z})^{2}}=-\frac{(\bar{z})^{2}}{z^{2}(\bar{z})^{2}} \\
& =-\frac{1}{z^{2}} .
\end{aligned}
$$

(b) $f(z)=x^{2}+i y^{2}$. Thus $u=x^{2}$ and $v=y^{2}$ are defined on \mathbb{R}^{2} (they are polynomial functions). So we have

$$
u_{x}=2 x, \quad u_{y}=0
$$

and

$$
v_{x}=0, \quad v_{y}=2 y
$$

The first-order partial derivatives of the functions u and v with respect to x and y exist everywhere and they are also continuous.

Now considering Cauchy-Riemann equations

$$
u_{x}=v_{y} \Longrightarrow 2 x=2 y \Longrightarrow y=x
$$

and

$$
u_{y}=-v_{x} \Longrightarrow 0=0
$$

we have that $f^{\prime}(z)$ exists only when $y=x$, and we find that

$$
f^{\prime}(x+i y)=u_{x}(x, x)+i v_{x}(x, x)=2 x+i 0=2 x .
$$

(c) $f(z)=z \operatorname{Im}(z)=(x+i y) y=x y+i y^{2}$. Here $u=x y$ and $v=y^{2}$, which are defined on \mathbb{R}^{2} (they are polynomial functions). So we have

$$
u_{x}=y, \quad u_{y}=x
$$

and

$$
v_{x}=0, \quad v_{y}=2 y
$$

The first-order partial derivatives of the functions u and v with respect to x and y exist everywhere and they are also continuous.

Now observe that

$$
u_{x}=v_{y} \Longrightarrow y=2 y \Longrightarrow y=0
$$

and

$$
u_{y}=-v_{x} \Longrightarrow x=0
$$

Hence $f^{\prime}(z)$ exists only when $z=0$. In fact

$$
f^{\prime}(0)=u_{x}(0,0)+i v_{x}(0,0)=0+i 0=0 .
$$

(4) Show that each of these functions is differentiable in the indicated domain of definition, and also find $f^{\prime}(z)$:
(a) $f(z)=\frac{1}{z^{4}}, \quad z \neq 0$;
(b) $f(z)=\sqrt{r} e^{i \theta / 2}, \quad(r>0, \alpha<\theta<\alpha+2 \pi)$.

Solution. (a) $f(z)=\frac{1}{z^{4}}=\left(\frac{1}{r^{4}} \cos (4 \theta)\right)+i\left(-\frac{1}{r^{4}} \sin (4 \theta)\right)$, with $z \neq 0$. The firstorder partial derivatives of the functions u and v with respect to r and θ exist everywhere with $z \neq 0$; and they are also continuous.

Since

$$
\mathrm{C} / \mathrm{R}: r u_{r}=-\frac{4}{r^{4}} \cos (4 \theta)=v_{\theta} \text { and } u_{\theta}=-\frac{4}{r^{4}} \sin (4 \theta)=-r v_{r},
$$

f is analytic in its domain of definition. Furthermore,

$$
\begin{aligned}
& f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta}\left(-\frac{4}{r^{5}} \cos (4 \theta)+i \frac{4}{r^{5}} \sin (4 \theta)\right) \\
& =-\frac{4}{r^{5}} e^{-i \theta}(\cos (4 \theta)-i \sin (4 \theta))=-\frac{4}{r^{5}} e^{-i \theta} e^{-i 4 \theta} \\
& =\frac{-4}{r^{5} e^{i 5 \theta}}=-\frac{4}{\left(r e^{i \theta}\right)^{5}}=-\frac{4}{z^{5}} . \\
& \text { (b) } f(z)=\sqrt{r} e^{i \theta / 2}=\sqrt{r} \cos \frac{\theta}{2}+i \sqrt{r} \sin \frac{\theta}{2}, \quad(r>0, \alpha<\theta<\alpha+2 \pi) \text {. }
\end{aligned}
$$

The first-order partial derivatives of the functions u and v with respect to r and θ exist everywhere in its domain of definition; and they are also continuous.

Since

$$
\mathrm{C} / \mathrm{R}: r u_{r}=\frac{\sqrt{r}}{2} \cos \frac{\theta}{2}=v_{\theta} \text { and } u_{\theta}=-\frac{\sqrt{r}}{2} \sin \frac{\theta}{2}=-r v_{r},
$$

f is analytic in its domain of definition. Moreover,

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta}\left(\frac{1}{2 \sqrt{r}} \cos \frac{\theta}{2}+i \frac{1}{2 \sqrt{r}} \sin \frac{\theta}{2}\right) \\
& =\frac{1}{2 \sqrt{r}} e^{-i \theta}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)=\frac{1}{2 \sqrt{r}} e^{-i \theta} e^{i \theta / 2} \\
& =\frac{1}{2 \sqrt{r} e^{i \theta / 2}}=\frac{1}{2 f(z)} .
\end{aligned}
$$

(5) Show that each of these functions is nowhere analytic:
(a) $f(z)=x y+i y$;
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$;
(c) $f(z)=e^{y} e^{i x}$.

Solution.

(a) Here $u=x y$ and $v=y$, which are defined on \mathbb{R}^{2} (they are polynomial functions).

The first-order partial derivatives of the functions u and v with respect to x and y exist everywhere and they are also continuous.

However, $f(z)$ is nowhere analytic since

$$
u_{x}=v_{y} \Longrightarrow y=1 \text { and } u_{y}=-v_{x} \Longrightarrow x=0
$$

which means that the Cauchy-Riemann equations hold only at the point $z=(0,1)=i$.
(b) Here $u=2 x y$ and $v=x^{2}-y^{2}$, which are defined on \mathbb{R}^{2} (they are polynomial functions). The first-order partial derivatives $u_{x}=2 y, u_{y}=2 x, v_{x}=2 x, v_{y}=-2 y$ exist everywhere and they are also continuous. Observe

$$
u_{x}=v_{y} \Longrightarrow y=0, \text { and } u_{y}=-v_{x} \Longrightarrow x=0
$$

so the Cauchy Riemann equations hold only at $(0,0)$, so f is nowhere analytic.
(c) $f(z)=e^{y} e^{i x}=e^{y}(\cos x+i \sin x)=e^{y} \cos x+i e^{y} \sin x$. Here $u=e^{y} \cos x$ and $v=e^{y} \sin x$, which are defined on \mathbb{R}^{2} (they are trigonometric and exponential functions).

The first-order partial derivatives of the functions u and v with respect to x and y exist everywhere; and they are also continuous.

However, $f(z)$ is nowhere analytic since

$$
u_{x}=v_{y} \Longrightarrow-e^{y} \sin x=e^{y} \sin x \Longrightarrow 2 e^{y} \sin x=0 \Longrightarrow \sin x=0
$$

and

$$
u_{y}=-v_{x} \Longrightarrow e^{y} \cos x=-e^{y} \cos x \Longrightarrow 2 e^{y} \cos x=0 \Longrightarrow \cos x=0
$$

More precisely, the roots of the equation $\sin x=0$ are $n \pi(n \in \mathbb{Z})$, and $\cos (n \pi)=(-1)^{n} \neq 0$. Consequently, the Cauchy-Riemann equations are not satisfied anywhere.

