SCHOOL OF MATHEMATICS AND PHYSICS
 MATH3401
 Tutorial Worksheet
 Semester 1, 2024, Week 5

(1) Show that the limit of the function

$$
f(z)=\left(\frac{z}{\bar{z}}\right)^{2}
$$

as z tends to 0 does not exist.
Hint: Do this letting nonzero points $z=(x, 0)$ and $z=(x, x)$ approach the origin.
(2) Find $f^{\prime}(z)$ when
(a) $f(z)=\frac{z-1}{2 z+1},(z \neq-1 / 2)$;
(b) $f(z)=\frac{\left(1+z^{2}\right)^{4}}{z^{2}},(z \neq 0)$.
(3) Determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=\frac{1}{z}$;
(b) $f(z)=x^{2}+i y^{2}$.
(c) $f(z)=z \operatorname{Im}(z)$.
(4) Show that each of these functions is differentiable in the indicated domain of definition, and also find $f^{\prime}(z)$:
(a) $f(z)=\frac{1}{z^{4}}, \quad z \neq 0$;
(b) $f(z)=\sqrt{r} e^{i \theta / 2},(r>0, \alpha<\theta<\alpha+2 \pi)$.
(5) Show that each of these functions is nowhere analytic:
(a) $f(z)=x y+i y$;
(b) $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$;
(c) $f(z)=e^{y} e^{i x}$.

