SCHOOL OF MATHEMATICS AND PHYSICS

MATH3401

Tutorial Worksheet

Semester 1, 2024, Week 6
(1) Using the appropriate definition of limits involving infinity, show that
(a) $\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4$;
(b) $\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty$;
(c) $\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z-1}=\infty$.

Solution. (a) Write

$$
\lim _{z \rightarrow 0} \frac{4\left(\frac{1}{z}\right)^{2}}{\left(\left(\frac{1}{z}\right)-1\right)^{2}}=\lim _{z \rightarrow 0} \frac{4}{(1-z)^{2}}=4
$$

(b) Here we write

$$
\lim _{z \rightarrow 1} \frac{1}{1 /(z-1)^{3}}=\lim _{z \rightarrow 1}(z-1)^{3}=0 .
$$

(c) Finally we write

$$
\lim _{z \rightarrow 0} \frac{\frac{1}{z}-1}{\left(\frac{1}{z}\right)^{2}+1}=\lim _{z \rightarrow 0}=\frac{z-z^{2}}{1+z^{2}}=0
$$

(2) Use the Wirtinger operator

$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

to show that if the first-order partial derivatives of the real and imaginary components of a function $f(z)=u(x, y)+i v(x, y)$ satisfy the Cauchy-Riemann equations, then

$$
\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left[\left(u_{x}-v_{y}\right)+i\left(v_{x}+u_{y}\right)\right]=0
$$

Thus derive the complex form $\partial f / \partial \bar{z}=0$ of the Cauchy-Riemann equations.
Solution. Apply the Wirtinger operator to a function $f(z)=u(x, y)+i v(x, y)$. That is

$$
\begin{aligned}
\frac{\partial f}{\partial \bar{z}} & =\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y} \\
& =\frac{1}{2}\left(u_{x}+i v_{x}\right)+\frac{i}{2}\left(u_{y}+i v_{y}\right) \\
& =\frac{1}{2}\left[\left(u_{x}-v_{y}\right)+i\left(v_{x}+u_{y}\right)\right]
\end{aligned}
$$

If the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$ are satisfied, this tells us that $\partial f / \partial \bar{z}=0$.

Note: we showed in class (Lecture 15, page 4) that $f^{\prime}(z)=\partial f / \partial z$ for complex differentiable f. This should make intuitive sense; viewing f as a function of z and \bar{z}, from above we can see the Cauchy Riemann equations imply $\partial f / \partial \bar{z}=0$.
(3) Determine which of the following functions $f(z)$ are entire and which are not? Justify your answer. If $f(z)$ is entire, find $f^{\prime}(z)$.
(a) $f(z)=\frac{1}{1+|z|^{2}}$;
(b) $f(z)=\left(x^{2}-y^{2}\right)+2 x y i$;
(c) $f(z)=\left(x^{2}-y^{2}\right)-2 x y i$.

Solution. (a) Since $u(x, y)=\left(1+x^{2}+y^{2}\right)^{-1}$ and $v(x, y)=0$,

$$
u_{x}=-2 x\left(1+x^{2}+y^{2}\right)^{-2}
$$

which is only equal to v_{y} when $x=0$. Hence the Cauchy-Riemann equations for $f(z)$ cannot hold in an entire neighbourhood, and thus it is not entire.
(b) Since

$$
\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f=(2 x+2 y i)+i(-2 y+2 x i)=0
$$

the Cauchy-Riemann equations hold for $f(z)$ everywhere. And since f_{x} and f_{y} are continuous, $f(z)$ is analytic on \mathbb{C}. And $f^{\prime}(z)=2 x+2 y i=2 z$.
(c) Since

$$
\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f=(2 x-2 y i)+i(-2 y-2 x i)=4 x-4 y i=0
$$

only when $x, y=0$. Hence the Cauchy-Riemann equations fail to hold in a whole neighbourhood, so $f(z)$ is not entire.
(4) Find the derivatives of the following functions in an appropriate domain:
(a) $f(z)=z \log z$;
(b) $f(z)=\log (z+1)$.

Solution. (a) From the differentiation rules we have that the function $z \log z$ is differentiable at all points where both of the functions z and $\log z$ are differentiable. Because z is entire and $\log z$ is differentiable on the domain

$$
|z|>0,-\pi<\operatorname{Arg}(z)<\pi
$$

it follows that $z \log z$ is differentiable on the same domain.

Figure 1: $z \log z$ is not differentiable on the dashed ray.

In this domain the derivative is given by the product rule

$$
\frac{d}{d z}(z \log z)=z \cdot \frac{1}{z}+\log z=1+\log z
$$

(b) The function $\log (z+1)$ is a composition of the functions $\log z$ and $z+1$. Because the function $z+1$ is entire, it follows from the chain rule that $\log (z+1)$ is differentiable at all points $w=z+1$ such that $|w|>0,-\pi<\operatorname{Arg}(w)<\pi$. In other words, this function is differentiable at the point w whenever w does not lie on the nonpositive real axis. To determine the corresponding values of z for which $\log (z+1)$ is not differentiable, we first solve for z in terms of w to obtain $z=w-1$. The equation $z=w-1$ defines a linear mapping of the w-plane onto the z-plane given by translation by -1 . Under this mapping the nonpositive real axis is mapped onto the ray emanating from $z=-1$ and containing the point $z=-2$ shown in color in Figure ??.

Figure 2: $\log (z+1)$ is not differentiable on the dashed ray.

Thus, if the point $w=z+1$ is on the nonpositive real axis, then the point z is on the dashed ray shown in Figure ??. This implies that $\log (z+1)$ is differentiable at all points z that are not on this ray. For such points, the chain rule gives:

$$
\frac{d}{d z} \log (z+1)=\frac{1}{z+1}
$$

