1. (a) \(u(x,y) = \sqrt{1 + xy} \), \(v(x,y) = 0 \).

\[u_x(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h} = 0. \]

\[u_y(0,0) = \lim_{h \to 0} \frac{u(0,h) - u(0,0)}{h} = 0. \]

So C/R hold at \((0,0)\).

(b) Consider \(\Delta z = h(1+i) \).

Then \[\frac{f(0+\Delta z) - f(0)}{\Delta z} = \frac{\sqrt{|h(1+i)|}}{h(1+i)} \]

\[= \frac{|h|}{h} \cdot \frac{1}{1+i} \] does not approach a limit as \(h \to 0 \) \((\Rightarrow \frac{1}{1+i} = 1+i \) as \(h \to 0^+ \), \(\Rightarrow \frac{-1}{1+i} = h \to 0^- \)).

Hence \(f'(0) \) can't exist.

(c) C/R is necessary but not sufficient for differentiability, so no contradiction.
Q2

\[\text{on } C_1: z(t) = -2 \text{e}^t, \quad 0 \leq t \leq 1 \]
\[\Rightarrow z'(t) = -2 \text{e}^t, \quad \int_{C_1} \text{Im}(z^2) \, dz = \int_0^1 -2 \text{e}^t \, dt = \frac{-2 \text{e}^t}{2} \bigg|_0^1 = -1 \]
\[\text{on } C_2: z(t) = t - i, \quad -2 \leq t \leq 2 \]
\[\Rightarrow z'(t) = 1, \quad \int_{C_2} \text{Im}(z^2) \, dz = \int_{-2}^2 \text{Im}(z^2) \, dt = 4 \]
\[\text{on } C_3: z(t) = 2 + it, \quad -1 \leq t \leq 0 \]
\[\Rightarrow z'(t) = i, \quad \int_{C_3} \text{Im}(z^2) \, dz = \int_{-1}^0 \text{Im}(z^2) \, dt = -1 \]

b) \[\text{on } C: z = \text{e}^{i\theta}, \quad -\pi \leq \theta \leq 0 \]
\[z' = i \text{e}^{i\theta} \]
\[\Rightarrow \int_{C} \text{Im}(z^2) \, dz = 2 \int_{-\pi}^0 \text{Im}(\text{e}^{2i\theta}) \, d\theta = 2 \int_{-\pi}^0 \sin 2\theta \, d\theta = -4 \int_{-\pi}^0 \sin^2 \theta \, d\theta = -4 \int_{-\pi}^0 \frac{1 - \cos 2\theta}{2} \, d\theta = 2 \int_{-\pi}^{\pi} \sin 2\theta \, d\theta = 0 \]
\[\neq 2 \int_{-\pi}^0 (-\cos \theta)^\frac{1}{2} - 2(\theta - \frac{\sin^2 \theta}{2}) \, d\theta = -2 \pi \]

C) \[\text{on } C: z = 2 \text{e}^{i\theta}, \quad -\pi \leq \theta \leq 0 \]
\[\Rightarrow z' = -2i \text{e}^{i\theta} \]
\[\Rightarrow \int_{C} \text{Im}(z^2) \, dz = 2 \int_{-\pi}^0 \text{Im}(\text{e}^{2i\theta}) \, d\theta = 2i \int_{-\pi}^{\pi} \sin 2\theta \, d\theta = 0 \]
\[= 4i \int_{-\pi}^0 \sin \theta \cos \theta \, d\theta + 4 \int_{-\pi}^0 \sin^2 \theta \, d\theta = -2 \pi \]
(1) \(f \) is not analytic on any domain containing any 2 of the curves from (a), (b) \& (c) by the Theorem from class (§43), if it were, the integrals would have to be equal.

(Note that \(f \) is in fact nowhere analytic.)

(2) a) The integrand is analytic on \(C \), with primitive \(e^z - \log z \); here \(\log z \) is a branch of the logarithm chosen with branch cut on the negative \(\text{Im} \) axis, i.e.,

\[
\log(re^{i\theta}) = \ln r + i\theta, \quad \frac{\pi}{2} < \theta < \frac{3\pi}{2}.
\]

So

\[
\int_C \left(e^z - \frac{1}{2} \right) \, dz = e^z - \log z \bigg|_a^b,
\]

\[
= \frac{1}{e} - \pi i - e + 2\pi i
\]

\[= \frac{1}{e} - e + \pi i.
\]

b) Integrand is analytic, so integral is path independent. A primitive is \(\sinh z \).

So

\[
\int_{0i}^{2\pi i} \cosh z \, dz = \sinh z \bigg|_{0i}^{2\pi i} = 0.
\]
(4) \(\frac{1}{z^2 + 4} \) is analytic on \(\mathbb{C} \setminus \{ \pm 2i \} \). In particular, it is analytic on \(\mathbb{C} \).

Since \(\frac{1}{z^2 + 4} = \frac{-\frac{1}{4}i}{z + 2i} - \frac{-\frac{1}{4}i}{z - 2i} \),

\(\Rightarrow \; \int_{C} \frac{dz}{z^2 + 4} = -\frac{1}{4}i \int_{C} \frac{dz}{z + 2i} + \frac{1}{4}i \int_{C} \frac{dz}{z - 2i} \).

as long as the integrals on the RHS exist.

Now, we distinguish 3 cases (note \(C \subset D \Rightarrow \) there are the only possible cases):

A. \(2i, -2i \notin \text{Int} \mathbb{C} \), \(C \) trivially oriented

B. \(2i \in \text{Int} C \), \(-2i \notin \text{Int} C \)

C. \(2i, -2i \notin \text{Int} C \).

In (A), Cauchy integral formula \(\Rightarrow \) \(\text{II} = \text{III} = 2\pi i \), so \(I = 0 \).

Similarly in (B), \(\text{II} = \text{III} = -2\pi i \).

In (C), Cauchy-Goursat \(\Rightarrow \) \(\text{II} = \text{III} = 0 \) \(\Rightarrow I = 0 \).
5) Put \(f(z) = \frac{z^2 + 8z + 42}{(z^2 + 4)(z^2 - 4z + 5)} \)

\[
|f(z)| = \frac{|1 + \frac{8}{z} + \frac{42}{z^2}|}{|1 + \frac{4}{z^2}| |z^2 - 4z + 5|}
\]

\[
\Rightarrow \frac{1}{|z|^2} \quad \text{as} \quad |z| \to \infty.
\]

In particular, on \(C_R \), \(|f(z)| < \frac{2}{R^2} = M_R \)
for \(R \) suff. large.

Since \(L_R = \text{length} \ C_R = 2\pi R \), we have via M-\text{\&} \text{L} \[
\int_{C_R} f(z) \, dz \leq L_R M_R = \frac{4\pi}{R} \to 0
\]
as \(R \to \infty \).

6) \(f(z) = \sin z \) is analytic on \(C \). So by Cauchy's formula:

\[
f^{(6)}(-1) = \frac{6!}{2\pi i} \int_C \frac{\sin z \, dz}{(z+1)^6}.
\]

\[
\int_C \frac{\sin z \, dz}{(z+1)^6} = 2\pi i \left. \frac{d^6}{dx^6} \sin(x) \right|_{x=-1}
\]

\[
= \frac{2\pi i}{6!} (-\sin(-1))
\]

\[
= \frac{2\pi i (\sin 1)}{6!} \quad (\approx 0.0093).
\]