Mid Semester Examination, 05 April, 2023

MATH3401/3901

Complex Analysis/Advanced Complex Analysis

(Unit Courses)
Time: 50 Minutes for working
No reading time before examination begins

CREDIT WILL BE GIVEN ONLY FOR WORK WRITTEN ON

 THIS EXAMINATION SCRIPT.FULL WORKING MUST BE SHOWN.
Use the back pages if the space provided is insufficient, and/or for rough working.
Answer all questions. Questions carry the marks indicated, total marks are 100. Check that this examination paper has 11 printed pages.
You may make use of any lecture notes that you have made related to the course. This can include your own handwritten or typed notes from lectures, and annotated pdfs of in-class notes, but does not include assignment solutions or past exam solutions.
Calculators - Casio FX82 series or UQ approved (labelled) only.
By uploading your completed exam, you are confirming that you complied with the University's academic integrity guidelines in completing this exam, that all work is your own, that you obtained no assistance directly or indirectly from any source other than those listed as permitted.

FAMILY NAME (PRINT):

GIVEN NAMES (PRINT):

STUDENT NUMBER:

SIGNATURE:

EXAMINER'S USE ONLY			
QUESTION	MARK	QUESTION	MARK
1		3	
2		4	
TOTAL MARKS			

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)

1. (a) Prove that $\sinh ^{-1} z=\log \left(z+\left(z^{2}+1\right)^{1 / 2}\right)$. Note that here, $w \mapsto w^{1 / 2}$ is double valued. [12 marks]
(b) Find all solutions $z \in \mathbb{C}$ of $\sinh z=4 i$ (express them in the form $x+i y$). [13 marks]

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
(Question 1 continued).

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)

2. Let $f(z)=x^{2}+y^{2}-2 i x y$ (where $z=x+i y$). [25 marks]
(i) Find all points $z \in \mathbb{C}$ at which f satisfies the Cauchy-Riemann equations. (Hint: the set is non-empty).
(ii) Find all points $z \in \mathbb{C}$ at which f is differentiable (Hint: the set is non-empty). Make sure you justify your answer.
(iii) Show that f is nowhere analytic in \mathbb{C}.
(iv) Explain why there is no contradiction between your answers to (ii) and (iii).

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
(Question 2 continued).

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
3. (a) Show that there holds: $\lim _{z \rightarrow \infty} \frac{z^{9}+7 z}{z^{5}+17 z}=\infty$ [12 marks]
(b) Determine the Möbius transformation (viewed as a mapping on $\overline{\mathbb{C}}$) mapping ∞ to 0,0 to $-i$, and 1 to ∞. [$\mathbf{1 3}$ marks]

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
(Question 3 continued).

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
4. (a) Calculate $\frac{d}{d z}(1+i)^{z}$, explaining any restrictions you need to make for your answer to be valid. [12 marks]
(b) Find all solutions of $\sin z=\cosh 4$ in \mathbb{C}. Express your answers in the form $x+i y$.[13 marks]

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
(Question 4 continued).

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
extra working space

MATH3401/3901 - Complex Analysis/Advanced Complex Analysis Mid Semester Examination, 05 April, 2023 (continued)
bonus extra working space

