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Metric Space Topology

Open sets.
A subset S of the set X is open in the metric space (X, d), if for every x ∈ S

there is an εx > 0 such that the εx neighbourhood of x is contained in S.
That is, for every x ∈ S; if y ∈ X and d(y, x) < εx, then y ∈ S.

An ε neighbourhood is open. It is often referred to as an ”open ε-neighbourhood”
or ”open ε-ball”.

For a ∈ X, consider the set N (a, ε) = {x ∈ X; d(x, a) < ε}.
If x ∈ N , then d(x, a) = r < ε.
Therefore εx = ε− r > 0, and for all y ∈ X with d(y, x) < εx,

d(y, a) ≤ d(y, x) + d(x, a) < εx + r = ε ,

so that y ∈ N .

X is open in (X, d).
φ is open in (X, d).

If the metric d is the discrete metric, then every subset S of X is open in (X, d).
For any x ∈ S the neighbourhood N (x, 1

2 ) = {x}, which is trivially in S.

The union of any number of open sets in (X, d) is open in (X, d).

If x ∈
⋃
α

Sα

then x ∈ Sa for some α = a.
Since Sa is open, there is N (x, ε) ⊂ Sa.

Therefore N (x, ε) ⊂
⋃
α

Sα .

The intersection of a finite number of open sets in (X, d) is open in (X, d).

If x ∈
n⋂
i=1

Si

then x ∈ Si for each i.
Since Si is open, there is an εi > 0 such that N (x, εi) ⊂ Si.
Let ε = mini εi. Then ε > 0, and

N (x, ε) ⊂ N (x, εi) ⊂ Si for each i

Therefore

N (x, ε) ⊂
n⋂
i=1

Si .

If there are infinitely many sets in the intersection, then the min is replaced by
the inf which may be zero.
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For example, the sets

Sn = {|z − z0| < R+
1
n
}

are open in (C, |.|), but
∞⋂
n=1

Sn = {|z − z0| ≤ R}

is not.

Closed sets.
Definition: a is an accumulation point of the set S if every ε neighbourhood of

a contains a point (x 6= a) ∈ S.

A subset S of X is closed in (X, d) if S contains all its accumulation points.

S is closed in (X, d) if and only if \S is open in (X, d).
The complement is taken with respect to the set X.
If x ∈ \S, then x is not in S and x is not an accumulation point of S.
Therefore there is some ε > 0 such that N (x, ε) contains no points of S.
Therefore N (x, ε) ⊂ \S, and \S is open.
Conversely, if \S is open, then if x ∈ \S, there is an epsilon neighbourhood of x

such that N (x, ε) ⊂ \S.
Therefore x is not an accumulation point of S, and hence every accumulation

point of S belongs to S.

From de Morgan’s laws it follows that the intersection of any number of closed
sets is closed, and the union of any finite number of closed sets is closed.

As with the case of open sets, the union of an infinite number of closed sets need
not be closed.

The sets
Sn = {|z − z0| ≤ R−

1
n
}

are closed in (C, |.|), but
∞⋃
n=1

Sn = {|z − z0| < R

is not.

X is closed in (X, d).
φ is closed in (x, d).
If d is the discrete metric, every subset of (X, d) is closed.

Continuity.
A function f from (X, dX) to (Y, dY ) is continuous at a ∈ X, if, given any ε > 0,

there exists a δ(ε, a) such that

dY (f(x), f(a)) < ε ∀ x ∈ X ; dX(x, a) < δ .

In terms of open sets, this says that

f(N (a, δ)) ⊂ N (f(a), ε) .

A function f from (X, dX) to (Y, dY ) is continuous at a ∈ X if and only if for
any sequence {an} in (X, dX) which converges to a, the sequence {f(an)} converges
in (Y, dY ) to f(a).
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A function f from (X, dX) to (Y, dY ) is continuous on X if it is continuous at
every point of X.

Theorem. The function f from (X, dX) to (Y, dY ) is continuous on X if and only
if for every open set U in Y , f−1(U) is open in X.

Proof.
a) Suppose that f is continuous on X, and let U be open in Y .
If a ∈ f−1(U), then f(a) ∈ U .
Since U is open, there is some ε > 0 such that N (f(a), ε) ⊂ U .
But f is continuous at a. Therefore there is a δ > 0 such that f(N (a, δ)) ⊂

N (f(a), ε) ⊂ U .
Therefore N (a, δ) ⊂ f−1(U), and f−1(U) is open.

b) Conversely, suppose that f−1(U) is open in (X, dX) for every U open in
(Y, dY ).

For any a ∈ X, N (f(a), ε) is open in Y .
Therefore f−1(N (f(a), ε)) is open in X, and a is in this set.
Therefore for some δ > 0, N (a, δ) ⊂ f−1(N (f(a), ε)) and hence f(N (a, δ)) ⊂

N (f(a), ε).

This result shows that continuity of a function f from X to Y is determined by
the open sets in X and Y .

If therefore two metrics on X give rise to precisely the same open sets in X, then
any function continuous with respect to one metric will be continuous with respect
to the other.

Definition. Two metrics d1 and d2 on a space X are topologically equivalent
if and only if a subset U of X which is open in (X, d1) is open in (X, d2).

If d1 and d2 are topologically equivalent on X, then

a) f : X → Y is continuous from (X, d1) to (Y, dY ) if and only if it is continuous
from (X, d2) to (Y, dY ).

b) f : Y → X is continuous from (Y, dY ) to (X, d1) if and only if it is continuous
from (Y, dY ) to (X, d2).

Proof.
a): Suppose that d1 and d2 are topologically equivalent, and that f is continuous

from (X, d1) to (Y, dY ).
Then , for every open set U in (Y, dY ), f−1(U) is open in (X, d1).
Since d1 and d2 are topologically equivalent, f−1(U) is also open in (X, d2), so

that f is continuous from (X, d2) to (Y, dY ).
Conversely, suppose that f continuous from (X, d1) to (Y, dY ) implies f contin-

uous from (X, d2) to (Y, dY ).
Since this does not depend on f or Y , we are free to choose the image space as

(X, d1) and the function from X to X as the identity function.
Then for any open set U in (X, d1), f−1(U) = U is open in both (X, d1) and

(X, d2), and d1 and d2 are topologically equivalent.

b): Follows in similar fashion.
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Theorem. If there are strictly positive constants c1 and c2 such that

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y)

for all x, y ∈ X, then d1 and d2 are topologically equivalent metrics on X.

Proof.
Let U be open in (X, d1).
Then for a ∈ X there exists ε > 0 such that

{x ∈ X; d1(x, a) < ε} ⊂ U .

But then
{x ∈ X; d2(x, a) < c1ε} ⊂ {x ∈ X; d1(x, a) < ε} ⊂ U

and U is open in (X, d2).
Similarly, if U is open in (X, d2) it is open in (X, d1), and the metrics are topo-

logically equivalent.

This criterion is sufficient but not necessary.

Let X = R, and consider the metrics

d1(x, y) = |x− y|

d2(x, y) =
|x− y|

1 + |x− y|

Obviously d2(x, y) ≤ d1(x, y) for all x, y, but since d1(x, y) = (1 + |x − y|)d2(x, y)
there is no strictly positive constant c such that d2(x, y) ≥ cd1(x, y).

On the other hand

{d1(x, a) < ε} ⊂ {d2(x, a) < ε}

so that if U is open in (R, d2) it is open in (R, d1), while if |x− a| < ε

d1(x, a) = (1 + |x− a|)d2(x, a)

≤ (1 + ε)d2(x, a)

Let ε1 = ε/(1 + ε).
Then {d2(x, a) < ε1} ⊂ {d1(x, a) < ε}, so that if U is open in (R, d1) it is open

in (R, d2).

For example, in R2,

max(|x1 − x2|, |y1 − y2|)
≤ |x1 − x2|+ |y1 − y2|

≤ 2 max(|x1 − x2|, |y1 − y2|)

so that the taxi-cab and sup metrics are equivalent.
In fact all the metrics generated by the norms ||x||p are topologically equivalent

on Rn for finite n.


