MATH 3402

TUTORIAL SHEET 1 SOLUTIONS

1.Describe each of the following sets as the empty set, as \mathbb{R} , or in interval notation as appropriate:

(a)
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)$$

(b)
$$\bigcup_{n=1}^{\infty} (-n, n)$$

(c)
$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right)$$

$$(\mathbf{d}) \qquad \qquad \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right)$$

(e)
$$\bigcup_{n=1}^{\infty} \left(\mathbb{R} \backslash \left(-\frac{1}{n}, \frac{1}{n} \right) \right)$$

(f)
$$\bigcap_{n=1}^{\infty} \left(\mathbb{R} \setminus \left[\frac{1}{n}, 2 + \frac{1}{n} \right] \right)$$

Ans.

(a)
$$-\frac{1}{n} < 0 < \frac{1}{n} \ \forall \ n, \text{ therefore } 0 \in \cap (-\frac{1}{n}, \frac{1}{n});$$
 If $x > 0, \exists N; x > \frac{1}{N}, \text{ therefore } x \not\in (-\frac{1}{N}, \frac{1}{N}), \text{ therefore } x \not\in \cap (-\frac{1}{n}, \frac{1}{n}).$ Similarly, if $x < 0, x \not\in \cup (-\frac{1}{n}, \frac{1}{n}), \text{ therefore } \cap (-\frac{1}{n}, \frac{1}{n}) = \{0\} = [0, 0].$

- (b) $\forall x \in \mathbb{R}, \exists N; N \leq x < N+1$, therefore if $x \geq 0, x \in (-N-1, N+1)$ and if $x < 0, x \in (N-1, 1-N)$, therefore, $\cup (-n, n) = \mathbb{R}$.
 - (c) Similar to (a). $\cap (-\frac{1}{n}, 1 + \frac{1}{n}) = \{0 \le x \le 1\} = [0, 1].$
 - (d) Since $\left(-\frac{1}{n}, 2 + \frac{1}{n}\right) \subset (-1, 3) \ \forall \ n, \cup \left(-\frac{1}{n}, 2 + \frac{1}{n}\right) = (-1, 3).$
 - (e) $\cup (\mathbb{R} \setminus (-\frac{1}{n}, \frac{1}{n}) = \mathbb{R} \setminus (\cap (-\frac{1}{n}, \frac{1}{n})) = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty).$
 - $(\mathbf{f}) \qquad \cup (\mathbb{R} \backslash [\tfrac{1}{n}, 2+\tfrac{1}{n}]) = \mathbb{R} \backslash (\cup [\tfrac{1}{n}, 2+\tfrac{1}{n}]) = \mathbb{R} \backslash (0, 3] = (-\infty, 0] \cup (3, \infty).$
- 2. Show that if $A \subset B \subset \mathbb{R}$, and if B is bounded above, then A is bounded above, and $\sup A \leq \sup B$.

Ans.

$$\exists b \ ; \ x \in B \Rightarrow \ x \le b \ .$$

But, if $x \in A$, $x \in B$, so that $x \leq b$ and A is bounded above.

Since any upper bound for B is an upper bound for A, in particular $\sup B$ is an upper bound for A.

Hence $\sup A \leq \sup B$.

3. Let a_0 and a_1 be distinct real numbers. Define $a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$ for each positive integer $n \ge 2$.

Show that $\{a_n\}$ is a Cauchy sequence.

Ans.

$$a_n - a_{n-1} = \frac{1}{2}(a_{n-1} + a_{n-2}) - a_{n-1}$$
$$= -\frac{1}{2}(a_{n-1} - a_{n-2})$$
$$= \left(-\frac{1}{2}\right)^{n-1}(a_1 - a_0)$$

Therefore, for n > m,

$$a_n - a_m = \sum_{r=m+1}^n (a_r - a_{r-1})$$

$$= \sum_{r=m+1}^n \left(-\frac{1}{2}\right)^{r-1} (a_1 - a_0)$$

$$= \frac{\left(-\frac{1}{2}\right)^{m-1} - \left(-\frac{1}{2}\right)^n}{1 - \left(-\frac{1}{2}\right)} (a_1 - a_0)$$

$$|a_n - a_m| \le \frac{2}{3} 2 \left(\frac{1}{2}\right)^{m-1} |a_1 - a_0|$$

$$= \frac{8}{3} |a_1 - a_0| 2^{-m}$$

Given $\epsilon > 0$, determine N such that

$$\frac{8}{3} |a_1 - a_0| \, 2^{-N} < \epsilon$$

and then

$$|a_n - a_m| < \epsilon \ \forall \ n > m > N$$
.

4. Suppose x is an accumulation point of $\{a_n : n \in \mathbb{N}\}$. Show that there is a subsequence of $\{a_n\}$ that converges to x.

Ans.

Since x is an accumulation point, given any $\epsilon > 0$ there are infinitely many elements of $a_i \in \{a_n\}$ such that $|a_i - x| < \epsilon$.

In particular, for $\epsilon=1$ we can find a_{i_1} such that $|a_{i_1}-x|<1$.

Now for $\epsilon < \frac{1}{2}$ there are infinitely many a_i such that $|a_i - x| < \frac{1}{2}$. In particular, we can find an a_{i_2} in this collection for which $i_2 > i_1$.

Similarly, with $\epsilon = \frac{1}{4}$ we can find a_{i_3} with $i_3 > i_2 > i_1$ and $|a_{i_3} - x| < \frac{1}{4}$.

Proceeding in this fashion we construct the required subsequence.

5. Given the non-negative real numbers a_1, a_2, \ldots, a_r , let $a = \sup\{a_i\}$. Prove that for any integer n,

$$a^n \le a_i^n + a_2^n + \dots + a_r^n \le ra^n ,$$

and determine

$$\lim n \to \infty (a_1^n + a_2^n + \dots + a_r^n)^{1/n}$$
.

Ans.

Since the set $\{a_i\}$ is finite, $a = a_i$ for some i.

Therefore
$$a^n \le a_1^n + a_2^n + \dots + a_r^n$$
.

Since $a = \sup\{a_i\}, a \ge a_i$ for each i.

Therefore
$$a_1^n + a_2^n + \cdots + a_r^n \le ra^n$$
.

Taking the n^{th} root, we obtain

$$a \le (a_1^n + a_2^n + \dots + a_r^n)^{1/n} \le r^{1/n}a$$
.

As $n \to \infty$, $r^{1/n} \to 1$, so that

$$\lim n \to \infty (a_1^n + a_2^n + \dots + a_r^n)^{1/n} = a$$
.

6. Consider the sequence

$$0, 1, -1, 2, -2, \frac{1}{2}, -\frac{1}{2} \dots$$

used to demonstrate the countability of the rationals.

- a) What is the fiftieth term in this sequence?
- b) Which term in the sequence is $-\frac{4}{5}$?

Ans.

The fiftieth term in this sequence will be the twentyfifth term in the corresponding sequence of positive rationals:

namely $\frac{4}{5}$.

 $-\frac{4}{5}$ is the fiftyfirst term in the sequence.