MATH 3402

TUTORIAL SHEET 2

SOLUTIONS

1. In each of the following cases, say whether (X, d) is a metric space or not. If it is not, say which of the axioms fails.

(a)

$$X = \mathbb{R}^2 \; ; \; d((x,y),(x',y')) = |y-y'| \; .$$

Ans. d((x,0),(x',0)) = 0 therefore axiom 2 fails

(b)

$$X = \mathbb{C} \; ; \; d(z_1, z_2) = |z_1 - z_2| \; .$$

Ans. This is the standard metric on $\mathbb C$.

(c)

$$X = \mathbb{Q}$$
; $d(x,y) = (x-y)^3$.

Ans. d(y,x) = -d(x,y). Axioms 2 and 3 fail.

(d)

$$X = \mathbb{C}$$
; $d(z_1, z_2) = \min\{|z_1| + |z_2|, |z_1 - 1| + |z_2 - 1|\}$ if $z_1 \neq z_2$, $d(z, z) = 0$.

Ans. The first three axioms are obviously satisfied.

If either $z_1 = z_2$ or $z_2 = z_3$ or $z_1 = z_3$, the fourth axiom is trivially satisfied. Therefore assume that all the points are distinct.

The metric is invariant under the mapping $z :\to 1-z$, therefore, wlog we can take $d(z_1, z_3) = |z_1| + |z_3|$, and consider the possible values of $d(z_1, z_2)$ and $d(z_2, z_3)$.

If
$$d(z_1, z_2) = |z_1| + |z_2|$$
 and $d(z_2, z_3) = |z_2| + |z_3|$, then

$$d(z_1, z_2) + d(z_2, z_3) = |z_1| + |z_3| + 2|z_2| \ge d(z_1, z_3)$$
.

If
$$d(z_1, z_2) = |z_1| + |z_2|$$
 and $d(z_2, z_3) = |z_2 - 1| + |z_3 - 1|$, then

$$d(z_1, z_3) = |z_1| + |z_3|$$

$$= |z_1| + |(z_3 - 1) - (z_2 - 1) + |z_2| \le |z_1| + |z_3 - 1| + |z_2 - 1| + |z_2|$$

$$\le d(z_1, z_2) + d(z_2, z_3)$$

If
$$d(z_1, z_2) = |z_1 - 1| + |z_2 - 1|$$
 and $d(z_2, z_3) = |z_2 - 1| + |z_3 - 1|$, then

$$d(z_1, z_2) + d(z_2, z_3) = |z_1 - 1| + |z_3 - 1| + 2|z_2 - 1|$$

$$\geq |z_1 - 1| + |z_3 - 1| \geq d(z_1, z_3).$$

Therefore (\mathbb{C}, d) is a metric space.

(e)
$$X = \mathbb{R} \; ; \; d(x,y) = \left| \int_x^y f(t) \, dt \right| \; ,$$

where $f: \mathbb{R} \to \mathbb{R}$ is a given positive integrable function.

Ans. Again the first three axioms are obviously satisfied.

To show that the fourth axiom is satisfied, assume wlog that x < z so that

$$d(x,z) = \int_{x}^{z} f(t) dt.$$

If x < y < z,

$$d(x,z) = \int_{x}^{z} f(t) dt = \int_{x}^{y} f(t) dt + \int_{y}^{z} f(t) dt = d(x,y) + d(y,z) .$$

If x < z < y,

$$d(x,y) = d(x,z) + d(z,y); d(x,z) \le d(x,y) \le d(x,y) + d(y,z)$$

If y < x < z,

$$d(y,z) = d(y,x) + d(x,z); d(x,z) \le d(y,z) \le d(x,y) + d(y,z)$$

Therefore (\mathbb{R}, d) is a metric space.

- 2. Sketch the sets $\{\underline{x} \in \mathbb{R}^2, d(\underline{x}, \underline{0}) < 1\}$ when $d(\underline{x}, \underline{y})$ is
- (a) The Euclidean metric;

Ans. The interior of the unit circle.

(b) The taxicab metric;

Ans. The interior of the square with vertices $(\pm 1, 0)$, $(0, \pm 1)$.

(c) The sup metric;

Ans. The interior of the square with vertices $(\pm 1, \pm 1)$.

(d) The discrete metric.

Ans. The point $\underline{x} = \underline{0}$

3. For $z_j = x_j + iy_j \in \mathbb{C}$, let

$$\xi_j = \frac{2x_j}{1 + |z_j|^2} \; ; \; \eta_j = \frac{2y_j}{1 + |z_j|^2} \; ; \; \zeta_j = \frac{1 - |z_j|^2}{1 + |z_j|^2} \; .$$

Show that

(i)
$$\xi_j^2 + \eta_j^2 + \zeta_j^2 = 1$$

Ans.

$$= \frac{\xi_j^2 + \eta_j^2 + \zeta_j^2}{4x_j^2 + 4y_j^2 + 1 - 2|z_j|^2 + |z_j|^4} = 1$$

(ii)
$$((\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2)^{1/2} = \frac{2|z_1 - z_2|}{\sqrt{(1 + |z_1|^2)}\sqrt{(1 + |z_2|^2)}}$$

Ans.

$$(\xi_{1} - \xi_{2})^{2} + (\eta_{1} - \eta_{2})^{2} + (\zeta_{1} - \zeta_{2})^{2}$$

$$= \xi_{1}^{2} - 2\xi_{1}\xi_{2} + \xi_{2}^{2} + \eta_{1}^{2} - 2\eta_{1}\eta_{2} + \eta_{2}^{2} + \zeta_{1}^{2} - 2\zeta_{1}\zeta_{2} + \zeta_{2}^{2}$$

$$= 2 - 2(\xi_{1}\xi_{2} + \eta_{1}\eta_{2} + \zeta_{1}\zeta_{2})$$

$$= 2 - \frac{8x_{1}x_{2} + 8y_{1}y_{2} + 2 - 2|z_{1}|^{2} - 2|z_{2}|^{2} + 2|z_{1}|^{2}|z_{2}|^{2}}{1 + |z_{1}|^{2} + |z_{2}|^{2} + |z_{1}|^{2}|z_{2}|^{2}}$$

$$= 4\frac{|z_{1}|^{2} - 2x_{1}x_{2} - 2y_{1}y_{2} + |z_{2}|^{2}}{(1 + |z_{1}|^{2})(1 + |z_{2}|^{2})}$$

$$= 4\frac{x_{1}^{2} + y_{1}^{2} - 2x_{1}x_{2} - 2y_{1}y_{2} + x_{2}^{2} + y_{2}^{2}}{(1 + |z_{1}|^{2})(1 + |z_{2}|^{2})}$$

$$= 4\frac{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}{(1 + |z_{1}|^{2})(1 + |z_{2}|^{2})}$$

$$= 4\frac{|z_{1} - z_{2}|^{2}}{(1 + |z_{1}|^{2})(1 + |z_{2}|^{2})}$$

Hence deduce that

$$d(z_1, z_2) = \frac{2|z_1 - z_2|}{\sqrt{(1+|z_1|^2)}\sqrt{(1+|z_2|^2)}}$$

is a metric on \mathbb{C} .

Ans. This function is derived from the Euclidean metric in \mathbb{R}^3 (restricted to the unit sphere), therefore the axioms for a metric satisfied by d.

Show that the sequence $\{z_n = n\}$ is a Cauchy sequence with respect to this metric.

Ans. Suppose wlog that m > n.

$$d(m,n) = \frac{2(m-n)}{\sqrt{1+m^2}\sqrt{1+n^2}}$$

$$< \frac{2(1-(n/m))}{\sqrt{1+n^2}}$$

$$< \frac{2}{n}$$

Given any $\epsilon > 0$, choose $N = [2/\epsilon]$. For m > n > N, $d(m, n) < \frac{2}{n} < \epsilon$ as required.

4. Show that if for some $x_0 \in S$, $d(x, x_0) < k$ for all $x \in Q$, then for any $a \in S$ there is a constant k_a such that $d(x, a) < k_a$ for all $x \in Q$.

(That is, a set Q is bounded in S if it is bounded with respect to some member of S.)

Ans. For any $a \in S$ and any $x \in Q \subset S$,

$$d(x,a) \le d(x,x_0) + d(x_0,a) < k + d(x_0,a) = k_a.$$