Chapter 3

Binomial asset pricing models

It is not uncommon for analysts to model stock prices in discrete time. Usually
these models are simpler than those which are continuous in time. Additionally, the
time scale of discrete models can be made to match the data collected from the real
world. For instance, in Australia’s recently reformed electricity market spot prices
for electricity only exist at five minute intervals, not continuously. Another example
is the majority of private stock market investors, those who only have access to daily
closing prices.

Binomial models are particularly simple because they assume that at each step
stock price movements are limited to only two possible values. These models are
especially attractive because of the ease at which they are implemented numerically.
Furthermore, the discrete-time results obtained in the binomial tree framework often
correspond to the continuous-time results in the limit as the time step tends to zero.

From a learning perspective, binomial asset pricing models provide a good setting

to play with martingales and risk-neutral pricing.

3.1 A single step model

Suppose the market consists of two securities: bonds which may be used for riskless
borrowing and lending, and a single type of stock. Unlimited amounts of either can

be bought and sold without incurring transaction costs. The stock has an initial price
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of sy and one time tick, &t, later will be worth Ss;. Ss; is a random variable which
takes one of two possible values; s, if the stock moves up, or s4 if the stock moves
down. Probabilities may be assigned to these stock movements. In summary

Sy, With probability p;
Set =

S4, WwW.p- 1—p.
Here’s an example which fits nicely into this framework.

Example 4 (Roulette). One possible type of bet at the roulette table in a casino is

. . . .7 18
to place a $1 chip on an odd number coming up. This event has a probability of 5
and pays $2. Before the wheel is spun another punter asks if you’ll sell a call option
on such a bet with strike price K = 50c for Cy = 73c. This option would be worth
2 — 0.50 if an odd number appears, and nothing in the event of any other number.

A quick calculation indicates the expected value of Cr is

E(Cr) =(2-0.5) x % +0 x % ~ $0.7297.
So T3c might be a fair price, but is it really what the contract is worth?
I claim that at this price it is always possible to make a risk-free profit.
The risk-free profit may be realised using the following strategy. Sell an odd number
bet worth T5c, buy the call costing 73c, and keep 2c in hand. After the wheel is spun

there are only two possible outcomes:

odd number need to pay $1.50 to cover the bet, but the call is now worth 2 — 0.5

dollars - exactly cancelling this out. We still have 2c¢ in hand.

any other number both the bet and the call are worth zero, and we still have a 2c
profit.

So this transaction will result in risk-free profit for the buyer of the call option. The

price of the contract is set too low, resulting in an arbitrage opportunity.

This example illustrates that the call option is not priced at its expectation. Even
if the stock moves with transition probabilities which are known, pricing using these

probabilities will, in general, be wrong.
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The correct price is found using a result mentioned in Section 2.1. The unique
initial price is equal to the cost of setting up a portfolio which will replicate the claim.
In other words, if we can construct a portfolio (in terms of stocks and cash bonds)
which has the same payoff function as the contract in question, then the cost of the
contract at time zero will be equal to the initial cost to set up the portfolio. If
it weren’t then there would be an arbitrage opportunity. One could buy (or sell as
appropriate) the replicating portfolio against the option, wait for maturity and simply
collect the difference.

As an example we shall construct the price of the call option. Recall that (in
our artificial universe) $1 now is worth $e™”, T time units later. Also recall that the

payoff of a call option at maturity is

St— K, if St > K;
Cr =
0, otherwise.

Consider a portfolio consisting of ¢ units of stock and ¥ worth of cash bond. It
costs Vo = ¢sp + 9 to set up this portfolio at time zero. One time-step later, though,

there are two cases to consider:

o5, + e, if step up;

Vr =
¢sq + e’ if step down.

We are aiming to replicate Cr, so set

sy — K = ¢Su + l/JerT;
and
0 = ¢8d + werTa

to form two linear equations in two unknowns; ¢ and . The solution is given by

Sy — K
¢ = ;

Su — Sd

P <_Sd(5u_K)) _

Sy — Sd
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If we bought this (¢, 1) portfolio at time zero, the construction ensures that it will be
worth the same as the call option at time 7" regardless of step direction. Therefore,

the value of the call option at time zero must be the initial cost of the portfolio.

WK —54(5u — K
o (K ) o (FHe= 1)
u ~ °d u — °d

We have derived the single step price for a call option. If it were any other price there

Namely

would be an arbitrage opportunity to make money. A price for which no arbitrage
opportunity exists is said to be risk-neutral.

Let’s apply this to the Roulette example.

Example 5 (Roulette revisited). Recall sy = 1 and St was either 0 or 2. The
interest is negligible since the payment occurs immediately. The strike price K for the
call option was 0.50 and we are interested in determining the amount the contract is

worth initially, Cy. Using the solution above we have

2 —-0.50
¢ - 2_0 )
—0(2 — 0.50)
(G 50

and the contract must be worth 75c.

3.2 A multiple step model

As a model for a real stock the single step binary branch has obvious limitations. It is
important as a building block for our next section on multi-period binomial models;
in other words, binomial trees. The simplicity of these models allows the results to
be obtained explicitly, yet rich enough to approximate many realistic situations.
Still working only with cash bonds and a single stock we shall construct a hedging
strategy on a binomial tree. Crucial to our arguments will be the assumption of no

transaction fees as this allows us to readjust our portfolio at each time tick.
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Here is a summary of the binomial tree model.
two securities a risky asset (stock) and a riskless asset (cash bond);
time a series of times 0,0t,20¢,..., N 6t =T at which trades can occur;

interest the risk-free interest rate fluctuates between time steps with the interest
rate for the next period known at the start of that period. Let r; be the risk-
free interest rate for the period [(i — 1)dt,4dt). Under this assumption $1 now

N r; 0t

grows to be worth By = [[,_; €"% at time 7T". Similarly, $1 promised at some

. . _ C N
future time T is worth By~ ! = e~ Zi=17i% pow;

binomial tree a binomial tree of possible states for the stock prices. As in the single
period model, suppose that at each time tick, the stock moves from its current
value, along a branch, to one of two other values. The stock is assumed to have
an initial value Sy which is known and constant. After n time ticks the value of
the stock price S, could be any one of 2" possibilities depending on the random

choice of path taken.

The famous Cox-Ross-Rubinstein model (Merton 1992, Musiela & Rutkowski 1997)
is a binomial tree with a special property. At each step of the CRR model the stock
price may move from spow to either s, = u spow or sq = d Snow, Where d and u are
constants which satisfy 0 < d <1+ r < u.

It is common to assign a set of transition probabilities, P. Under P each branch
is attached a weight corresponding to the tendency of the price process to travel that
branch. The roulette example of Section 3.1 demonstrated that stock derivatives are
not priced using these probabilities. It turns out that if there exists an arbitrage
price for a claim then there must be a measure QQ, separate from P, which also assigns
probabilities to each of the transitions, and the value of the claim ¢s the expectation
under Q.

The following example is from Baxter & Rennie (1996):

Example 6. Suppose the price process of a particular stock wanders on a binary tree.

Figure 3.1 gives the possible values for the first three steps. For simplicity we assume
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160

120

80

40

Figure 3.1: Stock price

the interest rate is zero. The transition probabilities are known to be % for a step up

1 . 7. . .
and 3 for down. For this ezample the probability that the stock after the third step is
worth $120 is

331 313 133
Pr(Ss =120) =793+ 321 T 1aw
since there are three paths which lead to 120. The expected value of Ss under this
measure is Ep(S3) = 130 (check this). What is the value of a European call option to
buy stock for $100 at time 37

Recalling that the value of a call is max(St — K,0) at time of maturity, we can
start filling in an analogous tree for the value movements of a call. The four time 3
nodes will be simply an application of the payoff function: max(S3 — K, 0).

For all times earlier than 3 we apply the construction strategy of Section 3.1; at
time 2 suppose the current stock price is 140, and that we hold ¢ units of stock and
1 cash bond. Note that in the next time tick the stock price will move to either 160
or 120, and the contract will be worth 60 or 20. We want our portfolio to match the
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60

40

15

Figure 3.2: Value of the call option

value of the call, so set

60 = 1606 + 1), (3.1)
20 = 1206 + 9.

Solving this set of linear equations yields

o = 60 — 20
160 — 120’
60 — 20
v = 60—160 —o— ).
160 — 120

The value of the call at t = 2 if Sy = 140 must be
Cy = 1400 + 9 = 40. (3.2)
Figure 3.2 gives the value of the call option at each step on the binary tree.

Solving equations analogous to (3.1) and plugging the solution into (3.2) for each
node is cumbersome. Some careful rearranging (see question 3) reveals these equations
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can be replaced by

Vhow = e_TJt (unp + (1 - Q)Vdown) ) (33)
where
_ 6TMSnow — Sd
q —Su ey

and where Vpow denotes the current contract’s value, and Vyp (resp. Vdown) is
future value of the contract if the stock moves up to s, (resp. down to sg). This
formula holds for the put and other options as well.

Notice that no reference to the transition probabilities P = (p,1 — p) was made
in deriving the solution. Instead we have Q = (¢,1 — ¢) which assigns also weights
to each branch. Furthermore, using Equation (3.3) it is easy to see that the initial

premium paid for the option is the discounted expected payoff taken with respect

to Qa
Vo = e TEq (Vir). (3.4)

The values, ¢ and v, which were obtained at each step are still useful. They
specify a trading strategy which will perfectly hedge the contract. The numbers ¢
and 9 are the quantities of stocks and bonds which should be held for the next time
step to replicate the value of the contract given the current stock price. They can be
obtained at each tick time using the solution to the equations analogous to (3.1) for

the general case; namely

Vup = su0+ 9,
VdOWD = Sd¢+1/).

The next example uses the stock price process and associated contract prices
described in Example 6 (and pictured in Figures 3.1 and 3.2) to describe the trading
strategy a merchant bank might use. The bank sells a call option to an investor at
time zero, their goal now is to design a strategy (in terms of bonds and stocks) which
will successfully replicate the value of the contract. By doing this the bank avoids

any exposure to risk.
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Example 7. The replicating portfolio starts with

¢ = (25—5)/(120 — 80) = 0.50,
¥ = 15—0.5 x 100 = —35.

The original portfolio should contain 0.5 units of stock and —35 dollars. The bank
sells the option for 15 dollars and should borrow another 35 and use this 50 dollars
to buy half a unit of stock worth 0.5 x 100.

Stock moves down to 80. The new replicating portfolio contains

¢ = (10—0)/(100 — 60) = 0.25,
Y = 5—0.25x80=—15.

Sell a one quarter share of stock worth 0.25 x 80 = 20 dollars. This reduces our debt
to 15 dollars.

Stock moves up to 100. The new portfolio contains

¢ = (20— 0)/(120 — 80) = 0.50,
% = 10— 0.5 x 100 = —40.

We need to buy a quarter share of stock, this costs 0.25 x 100 = 25 dollars. Our debt
s mow 15 4+ 25 = 40 dollars.

Stock moves up to 120. Qur holdings now include a 0.50 share of stock and a
40 dollar debt. The call finished in the money so we need to by another 0.50 units of
stock for 0.5 x 120 = 60 dollars, and sell all the stock at the strike price 100 dollars.
This 100 exactly cancels our debt 40 + 60. The strateqy results in neither loss nor a

gain.

Notice that the portfolio changes from one time to the next but the changes are

self-financing. That is to say, the total value of the portfolio before and after each
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trade are the same. The bank neither receives nor spends money except when it
initially sells the option.
The example shows the importance of tracking ¢, the number of units of stock to

be held as you leave a given node. It characterises the replicating (hedging) portfolio.

3.3 Risk-neutral pricing
In this section we shall investigate Formula (3.4),

Vo =e " Eo(Vr),

in a little more depth. This relationship between QQ, the random payoff Vi, and the
contract’s initial value V} is not an attribute of the binomial tree model. Instead it is
a consequence of the arbitrage-free market environment our model assumes and the
risk-neutral price which we are seeking.

The measures Q and P are nothing more than collections of weights assigned to
each branch of the binomial tree. The subjective measure P describes how likely
each transition is from each node. It is chosen according to assumptions about the
process being modelled. On the other hand, Q is imposed by the underlying stock
price process, and has nothing to do with any distributional assumptions. For the
binomial tree we found Q by construction. At each step ¢ was the weight of a step

up and 1 — g for a step down. We found

ot
e Snow — Sd

Sy — Sd

q:

What is special about QQ to make Equation (3.4) hold, and does it carry over to
other models? If the belated background on conditional expectation, filtrations, and

martingales, can be excused, the answer is given by the following theorem.

Theorem 3. A market is arbitrage-free iff there exists a unique martingale' measure,

Q for the discounted stock price process B;'S;. In this case, the risk-neutral price at
t

1Gee the appendix to this chapter for background on conditional expectation, filtrations, and
martingales.
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timet of any Furopean style claim with payoff Vi is given by the risk-neutral valuation

formula
Vi(F,) = BEq(B;'Vr|F). (3-5)

The implications of this result are significant. For one, it provides an easy method
to check whether a given market model is arbitrage-free: if there is exactly one proba-
bility measure under which the discounted stock price process B; 'S, is a martingale,
then we know the market is arbitrage-free. More importantly, when Equation (3.5)
can be evaluated, it provides a closed-form expression for the time ¢ value of any
contingent claim. As enticing as this sounds it is only useful if the model is simple
enough that the right hand side of Equation (3.5) can be evaluated. Much of the time
spent modelling financial markets is concentrated on searching for a happy medium

between realism and tractability.

Example 8 (The contingent claim which pays Sr). If the payoff of the contract
15 equal to the value of the stock at expiry, the claim can be replicated by simply pur-
chasing one unit of stock - therefore the value of the contract now must be Sy. Let’s
verify that this is the price we would obtain using Theorem 3.

We are aiming to show V,(F;) = S; at each time-tick t. Without loss of generality,
take the time between steps, 6t, to be 1. Then'V,,, S,, and F,, the values of the contract,
the underlying stock, and the process history at time ndt. Similarly B, = B, when
t =not.

Consider the contract value a single time-step before expiry. At time T — 6t =
N —1,

Vn_1(Fn-1) = By E@(BX/I V| Fn-1),

= e "Vgsy + (1 — q)sq)- (3.6)

Substituting

e'Nsy_1— S84
qgq=—""—
Sy — Sd
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into Equation (3.6) confirms Vy_1(Fy_1) = sy_1.

Proceeding backwards by induction, at any other time-tick n ot

Vn(]:n) = BnE@(BzTJIVN|fn)a

= BTL [QEQ (BJTIIVN|'7n:Sn+1 = Su)
+(1—q)Eg (BY'Vi | F, Sni1 = s4)], (3.7)

where

T
_emtlsy — sy
gq= ————.

Sy — Sd

Now, under the inductive assumption

Vn—}-l(fn—l—l) = Bn+1 E@ (BKIIVN | Fn—}-l) = Sn—i—l;

and so (3.7) becomes
Vo(Fn) = BBi[qsu + (1 — q)sq] = Sh.
n+1

Example 9 (Forward contract with strike price K). Consider a forward con-
tract maturing at T = N dt. This contract costs nothing to enter into and has payoff
Vi = St — K. Using Theorem 3 we know Vy = %(B;lvT), which can be evaluated
in terms of K, so, and Br. If the initial contract cost Vy is 0, then the strike price
must be fized at

N
K = 6279:1 Tk&tSo.

The discrete-time models we’ve considered so far have required some fairly unre-
alistic assumptions. In particular, if the stock price process wanders on a binomial
tree, then price changes only occur at certain times those changes are restricted to
be in some finite set of possibilities.

In the next section we will look at a model which takes the set of future stock
prices to be R*; any positive real number. The model is called the log-normal model
of stock price dynamics and may be approximated using binomial trees. The Black-
Scholes formulae for pricing European call and put options are heuristically derived
in the discrete time limit ¢ — 0.
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3.4 Log-normal price dynamics

At the time when a contract is written we don’t know the stock price at maturity,
we can only guess at it. The models of the preceding section assumed future stock
prices are part of some finite set with path probabilities representing the likelihood
of achieving each price. Another widely accepted model is that stock prices are log-
normally distributed. That is, there are constants p and o such that the log of the
stock price at time 7" divided by that at time 0, log (S7/Sp), is normally distributed

with mean T and variance 0?7 In symbols:

Pr &E[a,b] = Pr{log 5t € [loga,logb] ),
So So

log b 1 (.Z‘ _ NT)2
= ex - | dz.
loga 2rTo P ( 20°T )

Note that this calculation requires stock prices to be strictly positive.

The parameter p is called the expected return, and o the wvolatility. This model
assumes g and o to be constant in time, which makes the analysis much simpler.
Constant parameter models, however, are often poor reflections of reality.

Why should we believe the log-normal hypothesis about stock prices? Perhaps it
would be more credible to suppose that the daily (or hourly or minute-by-minute)
return is determined by a random event which we can model by flipping a coin. The
log-normal model is the limit of such dynamics, as the time-frequency of the coin-flips

tends to zero.

3.4.1 Log-normal dynamics as the limit of a binomial tree

Suppose then, we play a game in which at each stage is equivalent to flipping a coin.
If the coin comes up heads our opponent pays us dx dollars and if it comes up tails
then we pay 0z dollars. Let X; be the change in our fortune over the ith play. Each

random variable in the sequence {X;; i = 1,2,...} is independent and identically
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distributed. The most general case is

ox, w.p. p;
X, = p. P

—ox, w.p. 1—p.

Let S, = So + Y., Xi be the random variable denoting our (possibly negative)
fortune after the nth the coin toss. The sequence {S,; n = 1,2,...} is a stochastic
process known as a random walk. The path S7,S,,...,S, is chosen from a set of

sample paths which form a multiperiod binary tree with

Sy = Snow 0z,

S4d — Snow — ox.

We would like to think of the stock price process as an infinitesimal random walk.
In terms of our gambling game, the time interval between plays is 6t and the stake is
0x. To enable us to take the limit as these quantities tend to zero we recall a theorem
of fundamental importance in probability.

Theorem 4 (Central Limit Theorem). Let X1, Xo,... be a sequence of indepen-
dent and identically distributed random variables with finite means p and finite nonzero
variances 02 and let S,, = X1 + Xo+ ---+ X,,. Then

Sp—nu
no?

converges in distribution to a Gaussian random variable with mean 0 and variance 1

as n — Q.

A Gaussian random variable with zero mean and unit variance is called standard
normal.

The coin can be biased or fair, to keep things simple let’s concentrate on the fair
case; p=1—p= 3. Then we have p = E(X;) = 0and 0 = var(X;) = (0z)%
Thus

p ( Sn o ) / L oty
r r| — e 20627%dy, asn — oo.
N o V2m0z Y
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A simple random walk, however, won’t adequately model a stock price process.
Its fatal flaw is that it can wander onto the negative axis. Additionally, the rate of
change in stock price with respect to time should be proportional to the price. For
these reasons we need to re-think our approach.

Recall the way in which we modelled interest growth in discrete time. A bond
worth M(0) dollars now was worth M (t) = B;M(0) dollars a period ¢ in the future,

where B, = ™. The quantity that’s constant is not % but rather the interest rate
1daMm _
M dt
Suppose, for instance, that

= % log M. Perhaps we should aim for a similar model for stock growth.

d
% log St = hi,
where h; is constant throughout the time interval [(i — 1)dt,i6t]. Note that this

dSt

certainly satisfies the criteria <

o S Solving this differential equation within each

time tick leads us to

S; = SiieM’
or more generally

Si — ehitst-i-hi_1(5t+---+hj+1(5tSj, v] < ,1;, (38)

which is similar to the interest rate model. Unlike the interest rate model though,
future stock prices are not known in advance, therefore each h; should be a random
variable. Suggested earlier was the idea of a random walk. Suppose then that each
h; is independently and identically distributed with

p+o/Vot, w.p. 1/2,
p—o/Vot, w.p. 1/2.

The p-part of the expression can be regarded as modelling long-term market trends;
in compensation forour p=1—-p= % simplification. The o-part is really where the
randomness arises.

Note that this is the Cox-Ross-Rubinstein binomial tree model with

_ St+o/ot
Sy = Snowe€" ,

_ St—o/ot
S4 = Snowe" )
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Consider any time t. What is the probability distribution of stock prices at time 7
Let’s assume for simplicity that ¢ is a multiple of 6t, specifically ¢ = ndt. From

Equation 3.8 we have

n .
S, = SpeXi=ihidt

log (%Z) = Zhiét:: W,, say. (3.9)
i=1

Now W, is the sum of sequence of independently and identically distributed random
variables with means 1 §t and variances 024t (check this). The Central Limit Theorem
tells us that as n — oo, W\’/L%’ft — Z where Z is standard normal. Asymptotically
then, as 6t — 0

log (%) — undt+ovVndtZz,
0
S .
5 = pt+oVtZ, sincet=nét,
0

log <

3.4.2 Implication for pricing options

Sy = SperttoviZ

We attached subjective transition probabilities (always equal to 1/2) to our binomial
tree because we wanted to recognise log-normal dynamics as the limit of a coin-flipping
process. Now let’s consider a single binomial branch corresponding to some specific
time interval [(i — 1)dt, 4 6t] with ¢ near zero and use it to price options.

The structure of the tree is important. From Sections 3.1 and 3.2 we know the
future values s, and sg are of particular relevance. Also in those sections we es-

tablished that the transition probabilities p and 1 — p can be disregarded in favour
er&tsi_l —sq (

returning momentarily to the case
Su—38d

of the risk-neutral probabilities ¢ =
r; = r,Vi). Lastly, recall that we have the risk-neutral valuation formula for the price

of an option with payoff V; at maturity 7"

Vo1(Fnz1) = Br1Eg (Bj_"IVT|Fn—1)-
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In the current context

e’rJt _ 6;1,675—(7\/&

Using the Taylor expansion of e” in the neighbourhood of z = 0 we have (check this)
1 — 2/2
q=—<1—\/ﬁ—“ T+0/>+0(5t).
2 o
o(h)

“h
Our task now is clear. All we have to do is find the distribution of final values Sy

where o(h) represents a function of & such that —0as h— 0.
when one uses a ¢-biased coin, then take the expected value of the payoff function Vi
with respect to this distribution.

Proceeding in a similar fashion as before, let

but in contrast to Equation (3.9), here the h;s are defined as

b p+o/Vét, w.p. g,

p—o/Vot, wp. 1—q.

It is straight forward, though a little messy, to verify that W, is the sum of indepen-
dent and identically distributed random variables with

g (hiot) = (r— %O—Z)at +o(81),
varg(hidt) = o*8t+ o(dt).

The Central Limit Theorem tells us the limiting distribution is Gaussian, and the
preceding calculations tell us its mean and variance. Applying the Central Limit

Theorem,

W, —n(r — Lo?)dt

2

Vno?ét
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converges in distribution to a standard normal random variable Z. Therefore

1
log (gg) — (T - 502> t+oVtZ

in distribution. To summarise, as 6t — 0, when using the biased coin associated with

the risk-neutral probabilities,
1
Sy — Spexp [(r — 502> t+ ax/l_fZ] ,

where Z is normal with mean 0 and variance 1.

Remarkably, the statistical distribution of S; under the measure QQ depends on o
and r but not u! It follows that for pricing derivative securities the value u isn’t really
needed. So we may choose i any way we please - there’s no reason to require that it
match the actual expected return of the stock under consideration. For instance, we
may choose u so that y —r + %az = 0 to simplify the calculations.

Now that we have the probability distribution of S; in terms of Z we can apply
the risk-neutral valuation formula to calculate the time-zero value of a claim. If Cr
is the call option maturing at date 7', struck at K, with Cr = (St — K)™, then it’s

worth at time zero is
Eq(B;'Cr) = Eq ((Soe 3 T+7VT7 — e )t ),

o2

0 T G
— S — K T %7 dx, 3.10
/log(K/SO) (Soe ) a\/27TTe N ( )

= Sy®(d)) — Ke ™" ®(dy). (3.11)

where ®(z) = \/%—W [ e~%’/2du is the cumulative distribution function of a standard

normal random variable, and d; and dy are simplifying variables defined as

di = % [log (%) + (r+ %(72) T] :
o= s3]
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There is quite a bit of algebra involved in getting from Equation (3.10) to Equa-
tion (3.11), it’s a good exercise. Typical manipulations to perform include “complet-
ing the square” and “changing of dummy variables”.

A similar result may be obtained if Py is the payoff of a European put option with

strike K and expiry date T'. In this case the analogue of Equation (3.11) is
Eg (By'Pr) = Ke " ® (—dy) — So® (—d1) . (3.12)

Equation (3.12) ((3.11)) is Black-Scholes formula for the risk-neutral valuation of a
European put (call) option.

3.5 Appendix

This section contains a very brief review of the probabilistic ideas, such as measures,
conditional expectation, filtrations, and martingales, which are relevant to financial
calculus. At the level of this course, some of the best books on probability theory and
stochastic processes include Grimmett & Stirzaker (1997), and Ross (1996). Dudley
(1989) contains a useful collection of results, while any book with a title such as
“Martingale methods in financial modelling”, Musiela & Rutkowski (1997) is bound
to be helpful.

In discrete time the stock price process is really just a sequence of random vari-
ables Sy, S1, Sa, ..., St, or stochastic process. Given a measure P we have calculated
the expected value of Sy, Ep(St). The conditional expectation operator takes an-
other parameter; the process history. For any stochastic process, the conditional

expectation written
Ep (S7[S;, Sj-1,---550),

is the expected value of St given the process history up to some earlier time j. The
history {S;, Sj_1,...,So} is sometimes written F;. F; is called a filtration and denotes
the set (o-algebra) of all decidable events given the history {S;, S;j_1,...,So}-

A stochastic process {S,,n > 1} with Ep(|S,|) < oo for n =1,... is said to be a
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Figure 3.3: Stock process and martingale measure P

P-martingale process if
Ez(Sr|Sj,...,8) =S, j=0,...,N—1.

Grimmett & Stirzaker (1997) and also Ross (1996) both have excellent chapters on
martingales.

The stock price process in Example 6 is a martingale with respect to the measure
@ which assigns equal probabilities for steps up and down. Both measures operate on
the same state space. In fact, every event which is possible under QQ also has positive
probability under P, and vice versa. Any two measures which share this property are

said to be equivalent.
Example 10. The right pane of Figure 3.3 gives the martingale measure for the stock
process in the left pane. It is easy to check that this is the case since

1 2

1802 + 802, if S; =120;
B (Sa]S1, 5 = 80) = { 05 T 805 45 =S,
722 + 363, if S1=60.
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1 2
EP(52|SO == 80) == g]E]p(SﬂSl - 120, S(] == 80) —+ g]E]p(SﬂSl = 60, S() == 80) == S(].

Theorem 3 refers to the discounted stock price process being a martingale under Q.
That is to say Q is such that

B:1S:Sy,S1,...,S;) = B71S;, Vi < j. (3.13)
J J i

It is sometimes convenient to use the change of variables S, = g—; this makes this

premise (3.13)

E@(‘gj‘gOagla---aSi):gi Vi < 7,

which appears simpler and more natural from the viewpoint of the martingale defi-

nition.

3.6 Exercises

1. How would the roulette examples change if the table was biased such that
Pr(oddnumber) = 3 = 1 — Pr(notanodd).

2. Derive the single step price for a European put option.

3. Show that the initial value of a contract with payoff function

fu, if the stock rises;
Vi =
fa, otherwise,

priced using the single step binomial model is

e [qfu+ (1= a)fdl,

e T'sp—sy

where ¢ = = —
u
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10.

Using the single step model show that the hedging strategy which will replicate
a contract with payoff function

fu, if the stock rises;
Vr =
fa, otherwise,

is given by contains ¢ units of stock, and 1/ cash, where

¢ — fu_fd,
Su — Sd
= ¢ " (Vo — ¢so0)-

Evaluate Eg (By' (St — K)). Hence prove that the strike of a forward is fixed
at K = BrSy as claimed in Example 9.

Example 7 describes the replicating strategy to be followed should the stock

price process follow a down, up, up path.

(a) What would the strategy be if the stock went up, down, up?

(b) What would the strategy be if the stock went up, down, down?

Using the binomial tree model of Figure 3.1, fill in a similar tree with the values

of a European put option

(a) with strike price $110.
(b) with strike price $90.

Using the binomial tree model of Figure 3.1, fill in a similar tree with the values

of a contract with payoft |Sr — 100|.

Using the log-normal model derive the value of a European put option 7" time
units before expiry; Equation (3.12).

Show that Equations (3.11) and (3.12) satisfy the put-call parity.
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11. Using the Cox-Ross-Rubinstein model for stock price movements, verify that

the formula

rét g\ * _ prot\ m—t _
et (M) () e

puidm sy, >K

gives the value of a European call option struck at K with m time ticks until

maturity.



