Chapter 5

Brownian Motion

Several aspects of the binomial asset pricing models of Chapter 3 fail to capture
financial markets’ real features. Perhaps the most crucial flaw in these models is
that prices are restricted to lie on a lattice. The log-normal model alleviates some of
the problems but is less general than we would like; it lacks generality in the sense
that only processes which have an exponentially increasing trend with noise can be
catered for. Interest rates, for example, don’t necessarily have this shape. Neither do
energy prices follow a shape which agrees with the log-normal distribution (much to
the dismay of several researchers in the area).

The modern theory of Brownian driven continuous-time models dates back to
the 1950’s and '60’s, when researchers seemingly rediscovered the thesis of Bachelier
(1900). Apparently introduced before its time', his idea of using Brownian motion as
the driving process behind a stock market model is widely used today.

Brownian motion is named after the Scottish botanist Robert Brown who de-
scribed the motion of a pollen particle suspended in fluid in 1828. Brown observed
that the particle continually moved randomly on the surface. Einstein suggested in
1905 that the movements were due to collisions between the liquid’s molecules and
the relatively light pollen.

Applications of Brownian motion are not limited to the study of pollen suspended

in liquid. It has successfully been used to describe thermal noise in electrical circuits,

!Bachelier’s thesis was rejected (Korn 1997).
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limiting behaviour of queueing networks under heavy traffic, population dynamics
in biological systems, and of course it has been used in modelling various economic
processes.

Any book which deals with stochastic calculus will also provide a thorough treat-
ment of Brownian motion. Good introductions may be sought from Qksendal (1998),
Klebaner (1998), Chung & Williams (1990), Durrett (1996), Protter (1992), or Mikosch
(1998), for example. Alternatively one may like to look at a specialised text such
as Karatzas & Shreve (1991),or Revuz & Yor (1990).

A stochastic process W = (W, t € [0,00)) is called (standard) Brownian motion
or a Wiener process if it starts at zero (W, = 0) and the following conditions are
satisfied:

Gaussian process for each s > 0 and ¢t > 0 the random variable W, — W, has the

normal distribution with mean zero and variance ¢;

independent increments for each n > 1 and any times 0 <ty <t; < ---<t, the

random variables {W; — W, _ } are independent;
continuity with probability one, ¢t — W, is continuous.
Some of the properties of Brownian motion which are already apparent are:

e W, — Wi, s <t has the same distribution as W;_,, namely N(0,t — s);

Wi, s > 0 has the same distribution as v/t W, namely N(0,s);

E(W,) =0, Vt>0;

Cov(Wy, W) = E(W, W) — E(W,) E(W;) = s,
(rewrite Wy W, as (W, — W)W, + W2 and use the independence of W; — W,
and Wy).

The easiest way to think about Brownian motion is as an infinitesimal random
walk. This is not, however, the easiest way to construct the process. Therefore we

describe the process as a random walk and then construct it differently.
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5.1 Frogger

Frogger is a computer game which reached its height of popularity in the mid to
late 80’s. One basic version of Frogger consists of a multi-lane highway with traffic
and a small frog. The player’s objective is to simply guide the frog out of the paths
of oncoming cars and trucks. In order to do this the frog must jump from its current
position up or down a single lane at each of a number of equally spaced times. We
can regard the direction of each jump as being random because the stream of cars is
assumed random. Therefore the position of the frog after the nth jump is the result
of a random walk.

The game starts off relatively easy with only light traffic all moving slowly. If
the frog survives for some period, say ¢, then the game restarts at the next level of
difficulty - more cars, moving faster. To compensate for the increasing numbers of
cars, the frequency of jumps the frog makes also increases. The game continues: after
each period of length ¢ the frog needs to make a greater number of jumps if it is to
survive.

As the number of steps per period, n, increases so does the potential distance the
frog may move from its starting position. To keep things on the screen the program
scales the size of each lane to be \/% . The scaling parameter \/% is chosen because
it is the only scaling which leads to a sensible limit as n — oo. If the lane sizes are

bigger than \/% the random walker may reach infinity in a finite time, whereas if the
step sizes are smaller than \/% then the limiting process will have no variation at all.

We have set up a sequence of random walks indexed by n, X(™ = (XJ("); j=0,..., n)

J
X](”) = X0+Z§(k), where
k=1

) - f[ o

and now the obvious thing to do is apply the central limit theorem and see that the

= N

random walker X approaches (as m — 00) a random process W; with the properties
of Brownian motion as outlined above. This doesn’t prove that such a process exists.
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The problem with the random walk construction is that the sample paths are
not continuous. No matter how large the number of steps n there will always be
a discontinuity between sequential positions (j L X ](-")>, ((] +1)5, X ]@J, whereas
Brownian motion is continuous.

More formally, consider the o-field generated by the finite dimensional sets
Fo=Aw:w(t) €4, for 1<i<n}.

Each A; corresponds to the set of possible positions this walk could be at after 7 steps.
So F,, may be regarded as the collection of all possible sample paths of the random
walk with n steps. Our problem is that we are trying to construct a continuous
process with sample paths in the set

C={w:t— w(t) iscontinuous},

but for every n, C' ¢ F,. That is to say, C is not an F,-measurable set.

Brownian motion may be constructed using the random walk approach although
it becomes very technical. There are other rigorous methods of proving Brownian
motion exists. Kolmogorov’s extension theorem provides one of the neater proofs, as
outlined by Oksendal (1998). The approach we shall take is not as neat but avoids

the measure theoretic aspects of the extension theorem method.

5.2 Lévy’s Construction

History has proven that showing existence of Brownian motion is not an easy task.
Bachelier (1900) is credited as being the first to attempt a quantitative analysis, but
his construction was later shown to be erroneous (Mikosch 1998). The first rigorous
construction was given by Wiener in 1931, for this reason this process is also frequently
called a Wiener process. Wiener’s proof was later modified by Lévy. Lévy’s proof is
the one we shall sketch out here.

Lévy’s construction proceeds as follows. Define inductively a sequence of processes
XM = (X™(¢);¢ > 0). Without loss of generality we take the range of ¢ to be [0, 1].
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Figure 5.1: Lévy’s construction of Brownian motion.

We need a countable number of independent standard normal random variables. In-
dex these by the dyadic rationals of [0,1] ( {k27" : k,n > 0} ). In other words, we
have for each n a sequence of N(0,1) random variables labelled

{ek2™™) )0

Our induction begins with X (¢) = ¢ £(1), thus X(® is a linear function on [0, 1].
Next define X(V)(t) to be equal to X (¢) for ¢ = 0,1, but passes via a new point
X0y + %5(%) Formally

N OCLOREEE 0<t<l,
| XOG) + e 20 -3 (€0 - (KOG + HEG))) . s<i<

Effectively we are picking up the mid-point of X(©(¢) and shifting it causing X ™) (%)
to be a bent version of X(©(¢). The new function X(V)(¢) is linear on the intervals
[0,1) and [£,1]. Similarly the nth function X (t) is linear on the intervals
[(k—1)27",k2™), k = 1,...,2", and is thus determined by its values X ™ (k27™),
and X™(0) = 0.

Now for the inductive step. We take

X @D (252~ (D) = x (™) (22~ D)y = X ) (g2,



CHAPTER 5. BROWNIAN MOTION 69

That is to say, all the points which are corners in the previous process X ™ (t) are
also fixed corners in the next process. Half way between each of those corners we

bend the line again forming new corners according to the rule

XD ((2k —1)270D) = XM (26 —1)2-(H)) 975 ¢ <2k2; 1) .

Figure 5.1 may be useful to help visualise this construction process.

To prove that Brownian motion exists we need to check the following:
Lemma 5. Two conditions for existence of Brownian motion:

1. with probability 1, W; = lim,,_,c X™(t) exists for 0 < t < 1 uniformly in t;

2. furthermore, W, defined as this limit if it exists and zero otherwise satisfies the

conditions of the definition for Brownian motion.

Proof. We are aiming to show

lim Pr [ for some k > n, and every 0 < ¢ < 1, [X®(t) — XM (2)] > ¢] = 0.

n—0Q

Our starting point is to consider

(1) (4 — Y1) (£)] > —n/4] _ _ 1)9-(n+1)) > on/4
Pr[mtaX|X (t) — X®(3)| > 2 Pr[@gﬂg((zk 1)2-(D) > gn/4 |

IN

20 Pr(€(1) > 2"/,
2" exp(2"/?),
27",

IN

A

The last step is justified since

2n/2
lim ———— — oo,
n—o0 2n log(2)

therefore exp(—2"/?) — 0 faster than 2-2* — 0. From which we reason

3k > 0:exp(27/?) <27 Vn > k.
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Now for any m >n > k

Pr [mtax X () — XM (¢)] > 2—"/4} —1-Pr [mtax X (1) — XM ()] < 2—n/4} ,

and

m—1
Pr [max X)) - X)) < 27/1] > P [Z max [ X0+ (1) - X0(1)| < 2‘”/4] ,
j=n
> Pr |, max [ X0(0) - X)) < 2]

since 7 279/ = g/ (1= e ) < gt g

Pr |max | X () - X" (t)| < 2—”/4} > 1-Pr [u;n:—,j max [ XU (1) - XO(1)] > 2_]-/4} ,

m—1
> 1-Y Pr [max XU () — XD ()] > 2—j/4} ,
- t
j=n
m—1
Z 11— Z 2_j,
j=n
> 1— 2—n+1.

Finally we have that
Pr |max XM (@) — XM () > 274 <27 form >n > k.

Next recall a property from probability theory regarding the limit of an increasing
sequence of events. If { A, } is an increasing sequence of events, thatis A; C A, C ...,
then lim,, o A, = U, A;, and satisfies Pr (lim,, o, A,) = lim,,_,o Pr(A4,). Grimmett
& Stirzaker (1997) contains all sorts of useful probability relations.

Now {max, [ X™) () — X(®)(¢)| > 27"/4}%°_ is an increasing sequence of events

since the maximum can only increase by addition of a new vertex, so

Pr |max X () — XM™(t)| > 27/ for some m > n| < 27",
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In particular,

lim Pr [for some m >n and all 0 < ¢ < 1, XM () — XM ()| > €] =0,

n—oo

which completes part 1 of the lemma.

Part 2 is easy to check: X(™(t) satisfies all the properties (except continuity) for
t € {k27"}2_ . This is also true of the processes X ™) for m > n since the values at
these times don’t change. Therefore it must also be true for W on U, {k2 "}2" .

Continuity of the limiting process is established by observing that the uniform
limit of a sequence of continuous functions is continuous.

Finally, since each ¢ € [0,1] may be approximated arbitrarily closely by a sum
of the form Z;’;l a;277 where a; is either zero or one, all the defining properties of
Brownian motion must hold for any sequence 0 <t} <ty < .- <t, <1 from within
Unz {k27 "L .

Brownian motion is difficult to imagine and impossible to draw, when a text book
displays a sample path of “Brownian Motion” they are really graphing an infinitesimal

random walk.

e Brownian motion is a fractal, one can zoom in on a sample path as many times

as you like but the jaggedness never smooths out;

e Brownian motion is nowhere differentiable. No matter how small a segment you
choose, you will never (with probability zero) find a Brownian motion segment
which is a straight line, even though we constructed it from such pieces;

e Brownian motion sample paths do not have bounded variation on any finite
interval [0, T, that is

sup ‘Wti (w) - Wti—l(w)| = 0,
T =1

where the supremum is taken over all possible partitions 7 : 0 =%, < --- <1, =
T. In other words, if we wanted to lay a piece of string down on a Brownian
motion sample path in the interval [0, 7], we would need an infinitely long string
regardless of how small T';
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e physically speaking, if a particle is to perform Brownian motion then it must
have zero mass, otherwise how can it follow a non-smooth path?

5.3 Brownian driven stock models

When viewed on a small time scale, stock prices seem very similar to Brownian
motion. They are both jagged processes and this jaggedness never seems to smooth
under magnification. The stock price process seems to be forever changing direction,
just like Brownian motion.

Globally however, the similarity is less striking. Figure 5.2 compares a relatively
recent data set of Commonwealth bank share prices to standard Brownian motion.

The two major differences between these series are:

e the stock price process appears to become more volatile as time passes. This
change in volatility is in the sense that the instantaneous jumps are getting
larger. Brownian motion, on the other hand, has a variance which is constant

in time;

e standard Brownian motion may go negative, while the stock market we are
considering has strictly positive prices.

Brownian motion, as it is defined, is not a good model for the CBA stock price, but
that’s not to say we should abandon the idea. Our aim is to mould Brownian motion
to have a shape similar to the one we are modelling. Once we have the shape, we can
perform a probabilistic analysis on the model and form estimates of the quantities we
are interested in: things like “what’s the likelihood of a stock losing more than 10%
of it’s value in a day”, or “how much should we charge for this option contract?”

We have established that standard Brownian motion does not make a good model
for the stock price process which we are interested. Firstly, the stock price process
may have a long term trend for growth or decay. Brownian motion wanders around

its mean, zero. As a partial solution we can add a drift term and fit the model

St :/,Lt+Wt
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Figure 5.2: CBA stock prices and simulated (standard) Brownian motion

The model may be too noisy or not noisy enough, this can be rectified by incorporating

a scaling factor
St = ,U;t +o Wt.

It is not difficult to check that the new process is a transformation of Brownian motion
with mean pt and variance 02 t. The new process is still a Gaussian process, but with
a shifted mean and scaled variance. We call this process Brownian motion with linear
drift.

Now seems like a good time to check how closely our model reflects reality. Fig-
ure 5.3 gives an indication of how our process is likely to look. The graph clearly
illustrates the effect of adding a drift and scaling the variance to the original Brownian
motion. All-in-all we have a better model than the previous, but it’s not glitch-free;
the process can still go negative.

In their landmark papers Black & Scholes (1973) and Merton (1973) suggested
another transformation as a model for prices, Geometric Brownian motion. This

stochastic process is quite simply our Brownian motion with drift process passed to
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Brownian motion with drift
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Figure 5.3: Simulated sample path of Brownian motion with drift; x = 10, and

0% =5.
the exponential function
Sy =exp(ut+ o Wy).

Figure 5.4 shows just how impressively similar this model is to reality. Note in par-
ticular the increasing variance. If one was to take greater care in selecting parameters

i and o there is no doubt that this simple model could be put to practice.

5.4 Exercises

The Matlab files brownian.m, and geombrownian.m available at
www.maths.uq.edu.au/ "mrt/ms479/

may help with these exercises.

1. Let {W,};>0 be a standard Brownian motion. Which of the following are also

Brownian motion? Justify your answers.

(a) {_Wt}tZO,
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Commonwealth Bank stock price
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Figure 5.4: Commonwealth Bank stock prices and Simulated sample path of Brownian

motion with drift; u = 1, and o? = .5.
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(b) {CWt/c2}t20,
(c) {\/Ewl}tzo,
(d) {Wa — Wi}iso-

2. Each pane in Figure 5.5 matches one of the equations:

St — 60-5t+Wt7
St — e1ﬁ—|—0.5Wt7
S, = 14+05t+W,
S, = 1+t+05W,.

76

(5.
(5.
(5.
(5.

Which matches which? What are the characteristics which allow you to tell

them apart?
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Figure 5.5:



