Chapter 6

Martingales

Just as in discrete time, the notion of a martingale will play a key role in our con-
tinuous time models. To reiterate the sentiments of Section 3.3: the risk neutral
valuation formula of Theorem 3 does not arise from the properties of the binomial
model, rather it has deeper roots. A basic knowledge of martingales will help us to
understand exactly what those underlying roots are.

The purpose of this chapter is to provide a summary of the basic definitions
required for the following chapters on stochastic calculus and martingale pricing. We
give working definitions and examples of filtrations, adapted processes, martingales,
and martingale variants.

This background information may be found in almost any text on stochastic pro-
cesses which doesn’t omit the measure theoretic aspects of probability. Grimmett &
Stirzaker (1997) is a book which may be familiar to students of MS303 Stochastic
processes and MS308 Probability theory. Karatzas & Shreve (1991), Klebaner (1998),
Mikosch (1998), and Musiela & Rutkowski (1997) all cover this work and have the
similar aims as us; that is to say, they are books which will also be useful in the next
chapters.

Recall that in discrete time, a sequence Xy, X1,..., X, of random variables is a
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martingale if

E(|X,|]) < oo, Vr,
E(Xr‘f},l) = erl, Vr.

The sequence {F,}"_, we called a filtration. The filtration serves to keep track of
information about the stochastic process as time progresses.

Similarly in continuous time, the symbol F; denotes all the information generated
by the stochastic process X on the interval [0,¢]. F; is a o-field. The family F =
(Fi;t > 0) is called the filtration of X. It has the property that F; C F; whenever
s < t.

If, based upon observations of the trajectory (X,;0 < s < t), it is possible to
decide whether a given event A has occurred or not, then we write this as A € F;.

Equivalently we say A is F;-measurable.
Example 12. 1. Let A ={X, <3.14,Vs < 18}, then A € Fig but A ¢ Fi7.
2. The event A = { X0 > 8} satisfies A € Fs iff s > 10.

If the value of a stochastic variable Z can be completely determined given obser-
vations of the trajectory (X;;0 < s <) then we also write Z € F. If Y = (Y;¢ > 0)
is a stochastic process such that we have Y; € F; for all ¢ > 0, then we say that Y is
adapted to the filtration (Fy;t > 0).

Example 13. 1. The stochastic variable Z5 = f05 X,.ds isin Fy iff t > 5.

2. If Wy is Brownian motion and My = maxXo<s<; Wy, then M is adapted to the

Brownian filtration.

3. If W, is Brownian motion and M; = maxXo<s<¢41 Ws, then M is not adapted to

the Brownian filtration.

An important subclass of adapted processes are the previsible processes. A continuous-
time stochastic process is previsible if it is adapted and continuous. Predictable is

sometimes used as a synonym for previsible. If an adapted process is guaranteed to
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be continuous then it is possible to locate the position of the process in the next
instant to within an arbitrarily small diameter. In discrete-time a process is called
predictable if it is F;_; measurable.

Consider a probability space (2, F,P). An Fi-adapted family M = (M;;t > 0) of
random variables on this space with E(|M;|) < oo for all t > 0 is an F;-martingale if,
for all s <'t,

E(M;|F;) = M. (6.1)
If the particular filtration is obvious or unimportant, then M will be referred to as
simply a martingale.

Essentially {2 represents the set of elementary events in the sample space, the

filtration F is the collection of all subsets of €2, and P assigns probabilities to the
events in F. The triple (2, F,P) is called a probability space.

Lemma 6. If (W;;t > 0) is a Brownian motion generating the filtration (Fy;t > 0),
then

1. Wy is an Fi-martingale.
2. W2 —t is an Fy-martingale.
3. exp (aWt — "2—2t> 18 an Fi-martingale.

Proof. The key idea to establishing the martingale property is that for any function g,

the conditional expectation of g(W;, s — W;) given F; equals to the unconditional one,
E(g(Wirs — W) |F) = E(g(Wiys — Wi)),
due to the independence of Wy, s — W; and F;. The later expectation is just E(g(X)),
where X is normally distributed N (0, s) random variable.
1. By definition, W; ~ N(0,t), so that W; is integrable with E(W;) = 0.
EWis|F) = EW, + (Wips — Wi)|F),
= EWi|F) +E(Wis — Wi F),
= Wt + E(Wt+s - Wt):
- Wt-
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2. By definition, E(W?) = ¢ < oo, therefore W2 is integrable. Now

Wt2+s = (Wt + Wt+s - Wt)2a
= W7+ 2W,(Wips — We) + Wiy — Wi)%,

EW2,|F) = W7+ 2BE(W,(Wyys — Wo)|F) + E(Wips — Wo)?| ),
= Wt2 + s.

Subtract (¢ + s) from both sides to establish
E(W/i, — (t+5)|F) = W7 —t.
3. Consider the moment generating function of W,
]E(e”Wt) = /2 < 0,

since W, has the N(0,t) distribution. This implies integrability of e*W:=t"/2,
moreover

]E(eth —tu2/2) -1
The martingale property is established as follows

E(e®Wers | F,) = E(evWeteWers—Wo)| £,y
= Wit (Wers =W | ),
by the independence of W, ; — W; from F;
= W (eu(Wers =Wy

2
= eUWH—% .

Therefore

_ 2 su2 _ 2
E(euWH.S (t+s)u /2|ft) — euWH— e (t+s)u /2’

uWi—tu? /2
’

e as required.
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Brownian motion is sometimes referred to as “the fundamental martingale with
continuous paths” since it is common to express other martingales in terms of it.
Lemma 6 gives three examples of this fact. The martingale W2 —t provides a charac-
terisation (Lévy’s characterisation) of Brownian motion. If a process X; is a contin-
uous martingale such that X? — ¢ is also a martingale, then X; is Brownian motion.

The martingale euWi—tu? /2

is known as the exponential martingale as it is related to
the moment generating function. It is used for establishing distributional properties

of the process.

6.1 Semimartingales

The rules of stochastic calculus hold for a general class of processes called semimartin-
gales. A right-continuous adapted process with left-limits (cadlag) is a semimartingale
if it can be represented as the sum of two processes: a local martingale M; and a finite

variation process A,
St:SO+Mt+At, M():AO:O.

This representation is not necessarily unique. The definition of a local martingale is
that of a martingale with the boundedness condition E(|M;|) < oo relaxed. Every
martingale is a local martingale.

It is important to realise that every It6 process (defined in Section 7.1.3)

t t
St = S() + / O'tth + / ,utdt
0 0

is a semimartingale, as are many other processes. For example, a process may have
jumps and still be a semimartingale. All of the general theory of stochastic calculus
carries through to this larger class of process. If f is a twice continuously differentiable
function (f € C?) and S; is a semimartingale then f(S;) is also a semimartingale.
The decomposition of f(S;) into a martingale part and a finite variation process is
given by the famous It6 formula (see Section 7.1.3).
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In some instances it is useful to decompose the local martingale part of a semi-
martingale one step further. Any local martingale M admits a unique decomposition

M, = My + M{ + M¢,

where M¢€ is a continuous local martingale, and M? is a purely discontinuous local
martingale. M¢ is called the continuous part of M, and M? its purely discontin-
uwous part. The terminology “purely discontinuous” could be read “orthogonal to
continuous”, since the definition of a purely discontinuous process M? is one which
is orthogonal to all continuous local martingales X in the sense that the covariation
(M*, X), is identically 0.

Such a decomposition is invaluable when working with jump diffusions. Indeed,
in Section 7.1.4 we shall use the fact that M defined as M; = J; — A;, where J is a

Poisson process with intensity function Ay, is a purely discontinuous local martingale.

6.2 Change of measure

It is slightly ambiguous to refer to a process W; as “Brownian motion” without
specifying a probability measure for which W, exhibits the properties in the definition.
Measure affects the property of W; being a martingale; Wy, — W, conditioned on
the filtration F;, must be distributed as a Gaussian N(0,¢) random variable. This
vagueness hasn’t been a problem in the material so far, but it will become more
important in later sections where we will be discussing changes of measure, the Radon-
Nikodym derivative, and the famous theorem by Cameron, Martin, and Girsanov.
Why is there a need to specify a measure under which a process W is a Brownian
motion? Consider the following situation: we have two stochastic processes Wi,
W,, and a probability measure P. Suppose that W, satisfies the independence of

increments and continuity properties of Brownian motion and that P is such that
E]P(ee(wt-l_s_ws)‘fs) _ 6%6%-

Recognising this as the moment generating function of a normal N(0,¢) we conclude
that W, is a P-Brownian motion. Now suppose that W, is defined in terms of W, as
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W, = vt + W,, where v # 0 is some constant. Clearly W, satisfies all the properties
of Brownian motion except Wi, — W, ~ N(0,t). The new process W, is not a

P-Brownian motion because it has a drift term ¢ which causes the mean
Ep (W;) = 7,

to be non-zero.

Recall the intuitive idea that a probability measure assigns relative likelihoods to
the possible sample paths that a process may take. What if we had a probability
measure Q which assigns weight in such a way that the drift is completely compen-
sated for? In other words, suppose that under Q the sample paths of W, which are in
the opposite direction to the drift are more likely to be travelled. And furthermore
suppose that this bias has the very specific “magnitude” Eqg(W;) = —vt. Even if Q
maintains W; as a Gaussian process with variance t it is certainly not a standard
Brownian motion under this new measure.

Let’s examine the moment generating function of W; under the measure Q.

Eqo (™) = Eq(eP0HWo),
= "By (M),

_ 1lp2
e'ytﬂe Yt0+50 t’

where in addition to assuming that Q actually exists, we've assumed that it preserves
the variance ¢ and fundamental shape (normality) of the distribution. Thus the
moment generating function of W; under Q is that of a Gaussian N(0,¢) random
variable, and W, satisfies all the properties of a Q-Brownian motion.

So, assuming we can make this rigorous, we have two equivalent measures Q and
P with W; being a P-Brownian motion but not a Q-Brownian motion, and W, =
vt + W, being a Q-Brownian motion but not a P-Brownian motion. The measures

are implicitly related through the expectation operator
Ep(eewt) _ 6%021: _ 60'ytE@ (60Wt).

We have actually been exploring a simple case of Girsanov’s Theorem (see Sec-
tion 7.1.5).
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The probability measure Q is called absolutely continuous with respect to P, writ-
ten as Q < P, if every event with zero probability under P also has zero probability
under Q. Note that if Q < P and P < Q, then Q and P are equivalent measures.

Theorem 7 (Radon-Nikodym). Let Q < P, then there erists a random variable
A > 0 such that Ep(A) =1, and

Q(4) = /A AdP, (6.2)

for any measurable set A. A is P-almost surely unique.
Conwversely, if there exists A with the above properties and Q is defined by (6.2),
then it is a probability measure and Q < P.

The random variable A is called the Radon-Nikodym derivative of Q with respect
to P, and is usually written %. It follows from Equation (6.2) that
dQ

Eq(X7) = EP(dTPXT),

which may be extended to
%(Xt|Fs) = CS_I]EIP(CtXAFs)a s <t,

where (; = ]Ep(‘fi%|ﬂ) and X; is adapted to F;.

Let’s return momentarily to discrete processes. Figure 6.1 shows a two step non-
recombining tree and two probability measures P and QQ assigned to that tree. We
denote the path probabilities under the measure P as m;, with ¢ corresponding to
each of the four possible end points. Under Q each of the four final outcomes have

probabilities ;. Some easily verified points to note are
e given 7 we can extract the transition probabilities for P, provided 0 < 7; < 1, V;

e if Q is absolutely continuous with respect to P, then given the transition prob-

abilities for P and the ratios :—; we can find the transition probabilities for Q.
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Path probabilities 7 . ,
Path probabilities 7

Transition probabilities P Transition probabilities Q

pPip2 = 71

p1(1 — p2) = w2

7
(1 —p1)ps =3 T3

1—-gs ’
(1—p1)(1 —p3) =ma T4

Time Time
Figure 6.1: A binomial tree assigned the measures P and Q.

The “random variable” Z—i is the Radon-Nikodym derivative of Q with respect to PP.
To check the validity of this statement let X be the random variable corresponding to
the final value of the random walk. X could be any one of x;, 2 =1,...,4 depending
on which path is travelled. Now for any measurable set A

dQ

QX € A) = = |m= [ —dP.

== (%)= B
1€EA 1€A

Initially it may seem strange that the ratio of path probablhtles be a random

variable. this arises since the value of the Radon-Nikodym derivative depends on the

random choice of path followed; hence the subscript i.

Example 14. Let Q = {HH,HT,TH,TT}, the set of coin toss sequences of length
two. Let P correspond to the probability % for H and % for T, and let Q correspond
to the probability % for H and % for T. The Radon-Nikodym derivative Z%(w) 18

dQ oy 9 dQ o 9 dQ 9 dQ 9

p D=7 pHN =5 FTH =5 FHIT) =1
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Working in the relative safety of a binomial tree, we take the opportunity to justify

some properties:

o the expected value of X under QQ given the P-path probabilities 7; and ‘fi% is

-t () (39,

i

e similarly
dP
(V) = K¢ (g7 )

e set X = %Y to get

dpP\
X)=E — X].
Bo(X) = Er ((d(@) )
It is important to note that the Radon-Nikodym derivative is a random variable
dependent only on the underlying process at time 7. The Radon-Nikodym derivative

is not itself a process. We can produce a process by letting the time-horizon vary. Let
(; be the value of the Radon-Nikodym derivative taken up to time . An equivalent

d
G =Ep (d%‘ft>a

where you will recall % is the Radon-Nikodym derivative at time 7. Note that (r

definition is

is simply z%.
The process (; has the useful property that for any random variable X

Eo (X|Fs) = ¢ Be (GX| F),

which may be interpreted as saying the change of measure from time s to t is g—:, and

is easily verified for the binomial tree model.
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Figure 6.2: Tree with the process (; marked.
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6.3 Exercises

1. Doob’s Martingale: Suppose we have a stock price model which is F;-
adapted. If X is a payoff function which is Fr-measurable, then prove that
the process M defined as

M, = E(X|F),
is a martingale under the same measure as the expectation is taken.

2. Let F = (F;;t > 0) be the filtration generated by a standard Brownian mo-
tion W = (Wy;t > 0). Which of the following are F;-martingales?

)

)
(c) tW, — [y Wids;
(d)

)

3. Show that if X is distributed N(u,1) under P, and Y = X — p, then there
is an equivalent measure Q, such that X is N(0,1) under Q. What are the

Radon-Nikodym derivatives 92

dQ dP 9
ik and a0

4. Let N; be a Poisson process with rate A under Q. Define P by

dP — e()\—l)T—N(T) log()\)'

dQ

Prove that under P, N is a Poisson process with rate 1.



