Chapter 7
Stochastic calculus

This chapter is split into two parts. First we will give meaning to the stochastic

integral for a diffusion process

t t
Xt:X0+/ usds+/ oy dWy, (7.1)
0 0

and also for the jump diffusion

t t
Xt:Xo—i-/usds—i-/ades-i-Jt.
0 0

The purpose of the other section is to provide analytic solution methods for some
classes of stochastic differential equations (SDEs). Given an implicit definition for X,

something like
dXt = a(t, Xt) dt + b(t, Xt) th,

our aim is to back out an expression for X, of the form (7.1).

There are only a few SDEs which can be solved analytically. The others must be
approximated numerically. A part of the course MN480 Computational Techniques in
Financial Mathematics is devoted to the numerical solution to stochastic differential
equations.

We recall that there are three primary components of Newtonian calculus:

89
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o differentiation;
e integration; and
e the fundamental theorem.

Stochastic integration is defined as the limit of approximating sums, in the same
way as classical integration. Unlike ordinary calculus, however, the derivative of
a diffusion process cannot be computed as a limiting, instantaneous, rate of change.
Indeed, the sample paths of Brownian motion are nowhere differentiable in this sense.
In light of this fact, the role of the fundamental theorem changes. Instead of stating
the relationship between integration and differentiation as it does in real analysis,
the stochastic analysis version of the fundamental “theorem” actually defines what
is meant by a stochastic differential; it might be better named the “fundamental
stochastic definition”.

Stochastic calculus has an additional component over ordinary calculus; Gir-
sanov’s Theorem. It allows the underlying probability measure of a Brownian driven
stochastic process to be changed such that the process becomes a martingale. This
result has some very useful applications, especially relating to finance and risk-neutral
pricing.

Our approach follows that of Klebaner (1998). There are many other texts
which also provide understandable introductions; search for any title which includes
“stochastic calculus”, “stochastic differential equations”, or “stochastic integration”.
Reputable authors include Chung & Williams (1990), Durrett (1996), Karatzas &
Shreve (1991), and Mikosch (1998). Technical treatments can be found in Jacod &
Shiryaev (1987), Protter (1992), and Revuz & Yor (1990). And there must be some-
thing special in a book which is revised and republished five times by a top quality
publisher; as has (Oksendal (1998).

7.1 Stochastic integration

In Section 5.3 we talked of moulding Brownian motion to the shape of the process

we were trying to model. Equivalent to the notion of moulding Brownian motion,
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the modelling process may be regarded as adding random noise to a suitably cho-
sen deterministic function. Here the deterministic function is chosen to reflect the

underlying trends of the process of interest. Consider then the integral equation

t
X =z +/ a(s, Xs)ds,
0

which defines X; to be a process starting at xy and following a deterministic path.
Its value at any time ¢ > 0 is not random. Differentiating both sides of this equation
yields the differential equation

dX
d—tt =a(t, Xy), Xo = o,
which, with a slight abuse of notation, can be more conveniently written

dXt = a(t, Xt)dt, XO = 29-. (72)

Equation (7.2) specifies a first order ordinary differential equation with initial con-
dition Xy = x¢. The solution of which, if it exists, is a smooth function of ¢ which
exhibits no randomness at all.

Randomness is introduced via an additional random noise term:
dXt = a(t, Xt)dt + b(t, Xt)th (73)

Here, as usual, W = (W,,t > 0) denotes Brownian motion, and a(t, z) and b(¢, ) are
arbitrary functions. Provided it exists, the solution X of (7.3) is a stochastic process.
The process starts at Xy = xy and follows a path with trajectory based on a(t, X;)dt
which has been perturbed by random noise. Equation (7.3) is a stochastic differential
equation.

In addition to the diffusion process, we may also require a process to involve jumps.
If, for example, we were modelling a process which has a tendency to change violently
when unexpected news is broken. Sometimes such a process can be reproduced by
incorporating a Poissonian jump term .J; into Equation (7.3),

dXt = a(t, Xt)dt + b(t, Xt)th + th
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The curious reader may ask whether (7.3) is the most general form for a stochastic
process driven by Brownian motion to be written in. Are there functions Xy = g(W5)
that our modelling desires, but which don’t fit the form of (7.3)? This question is a
current topic of debate. Alternative forms have been discussed including the McShane
SDE (Blenman, Cantrell, Fennell, Parker, Wang & Womer 1995)

1
dXt = Cl,(t, Xt)dt + b(t, Xt)th + ibx(t’ Xt)b(t, Xt) (th)Q

What follows is an argument suggesting the form (7.3) is sufficiently general. After
which, we shall always be cautious that there may be room for further refinement.
We will be dealing extensively with discretisation of intervals in R. Consider a
partition of the interval [0, T:
Tn:0=tg<ti <---<t, 1<t,=T,

and define §; = 5§n) =t;—t;_1, ©=1,...,n. The mesh of 7, is defined as max; ¢;.
An intermediate partition vy, of 7, is given by any values y; satisfying ¢; | < y; < ¢;
for i =1,...,n. We shall sometimes use AX; to denote (X;, — X3, ,).
Suppose that the stock price is of the form S; = g(W;). Formally, using Taylor’s
Theorem and assuming ¢ is twice differentiable,
1
g(Wti+1) - g(Wti) = (WtH—l - Wti)gl(Wti) + E(Wtﬂ—l - Wti)Qg”(Wti) (74)
+ errors of order (Wy,,, — Wy,)3, 6;11°, and (Wy,,, — Wy,)6is.
Now we know from the definition of Brownian motion that

E [(Wt+6t - Wt)Q} = dt,

consequently we cannot ignore the second term in (7.4). Equation (7.4) can be written

1
g(Wti+1) - g(Wti) = (Wti+1 - Wti)gl(Wti) + E(Wti+1 - Wti)2g"(Wt1’) + O(m€8h(Tn))'
(7.5)
The next step is to replace (W,,,, — W,,)* by dt in the above expression. This substi-
tution is the source of much angst and is at the centre of the debate. The justification

is encapsulated by the proof of the following result, which may be found in entirety
in Klebaner (1998).
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Lemma 8. If g is a bounded continuous function, 7 = (1,;n > 1) is a sequence of
partitions of [0,t] with limiting mesh 0, and 6; € [W;,_,, Wy,|. Then

Z g(ez)(Wtz - Wti—1)2’
i=1

converges in probability to fotg(Ws)ds.

Proof. Any function of a continuous function is also continuous, therefore by the

continuity of g(W;)

Zg(ﬁz’)(ti —tis1) — /Otg(Ws)ds.

Aiming to show

> Wi [ awas,

the crucial step in the proof is showing that

n n
Zg(Wti—l)(Wti - Wt¢—1)2 - Z g(Wti—l)(ti - tifl) — 0,
i=1 i=1
in mean square. Put another way, we need to show

2

E ig(Wti_l) (AW;)? =6;)| — 0,

which is realised by noting that E ((AW;)? — &;)* < 262, and that 2EY." | g*(W,,_,)6?
is o(mesh(t,)).

Having shown that both sums Y., g(6;)(W;, — Wy, _,)* and >, g(6:)(t; — ti—1)
have the same limit in the case §; = W;,_,, and that limit is fot g(Ws)ds. Using the
continuity of g gives the generalisation from 6; = W;, | to an arbitrary 6 chosen such
that 0, € [W,, |, W] O
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Taking the limit as mesh(r,) — 0 in (7.5) with dt substituted for (W; s — W;)?
leads to

1
dSt = gl(Wt)th + ig"(Wt)dt
The differential equation governing S; = ¢g(W,) will take the form
dSt = U/(t, St)dt + b(t, St)th, S() = S9- (76)

A naive interpretation of (7.6) tells us that the change dS; = Sy 4 — S; is caused
by a change dt of time, with factor a(t,S;), in combination with a change dW; =
Witra — Wy of Brownian motion, with factor b(¢,S;). One of the strange properties of
Brownian motion is that the sample paths are nowhere differentiable (w.p. 1). How
then do we interpret dWW;? There is no easy (or even unique!) answer to this question.

As a starting point we might consider the integral equation

t t
St = so +/ a(r, S, )dr —i—/ b(r, S;)dW,, (7.7)
0 0

which has equivalent meaning to Equation (7.6). The remainder of this section is
largely devoted to finding a meaning for fot b(r, Sp)dW,.

7.1.1 The Riemann integral

Everyone is familiar with the classical Riemann Integral defined as the limit of a
Riemann sum. Suppose we have a real valued function defined on [0,7]. Given

sequences of partitions 7 and v we can define the Riemann sum

Sn = Sn(Tna’Yn) = Zf(yz)(tz - tz’fl) = Zf(yz)éz

Essentially S,, is an approximation to the area between the curve f and the t axis.

Choosing a sequence of partitions which have limiting mesh 0 we define

T n
| 1wy = im 5, = im S 75 (7.5)
=1
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The integral in (7.8) is only defined if it is independent of the chosen sequences {7, }
and {7,}. In this case we have the Riemann integral of f on [0,T].

The Riemann integral will work fine for the deterministic part fot a(r, Sy)dr of
Equation (7.7), but we are still stuck for a definition for fot b(r, S;)dW,.

7.1.2 Lebesgue integration

The Riemann integral is actually a special case of the Lebesgue-Stieltjes integral,

/0 f(y)dg(y).

This integral is constructed in the same fashion as the Riemann integral, only this time
we are integrating f with respect to another function g. For this reason it promises
to get us closer to the target of integrating with respect to a random process.

Let f and g be two real-valued functions on [0,7] and define

0ig=9(t;) —g(tic1), i=1,...,n.

The Riemann-Stieltjes sum is obtained by weighting the values f(y;) with the incre-
ments d;¢. If the limit lim,, o Y ;| f(y:)d;g, exists as the mesh tends to zero, and is

independent of the choice of the partitions {7,} and {7,} then
T n
| rwdstw) = lim - rwis

is called the Lebesgue integral of f with respect to g.

So, it appears that the integral fot b(r, S;)dW, might fit this framework, provided
b is nice enough that the integral exists. To quantify what we mean by “nice enough”
we need the following definition.

Definition 1 (p-variation). The function h is said to have bounded p-variation for
some p > 0 if

sup Y _ [A(ti) — hlti 1) < oo,
T =1
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where the supremum is taken over all partitions T of [0, T]. Special cases include
p =1 corresponding to plain variation. Setting p = 2 gives the definition of quadratic
variation,

(h)p = SEPZ h(t:) — h(ti1) P,

Sufficient conditions for Lebesgue integrability of f with respect to g are
e the functions f and g do not have discontinuities at the same point ¢ € [0, T];

e the function f has bounded p-variation and the function ¢ has bounded g¢-
variation for some p > 0 and ¢ > 0 such that p=' +¢= > 1.

Now Brownian motion has bounded p-variation on every fixed interval provided
p > 2, and unbounded for p < 2. Consider a deterministic function f : [0,7] — R.
According to the above theory, we can define the Lebesgue integral

/0 *foyam,

provided f has bounded g-variation for some ¢ < 2. This is certainly satisfied if f
has bounded variation; that is if ¢ = 1. For functions f which are differentiable with

f'(t) < o0, on [0,7] it follows from the mean value theorem that
JK > 0 such that |f(t) — f(s)| < K(t —s), Vs<t,

then
N N
sup »_ |f(t:) = f(ti)| S KDY (6= tima) = KT < 0.
Tl i=1

Hence f has bounded variation, and so fOT f(t)dW; exists. In particular, within the
Riemann-Stieltjes framework we can unambiguously define

T T T
/ €t th, / sm(t) th, / t" th, n > 0.
0 0 0
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We need not look too hard to find an integrand which is not Lebesgue integrable

though; consider the integral of Brownian motion with respect to itself

T
/ Wy dW,.
0

Brownian motion has bounded p-variation for p > 2, not for p < 2, and so the
sufficient condition 2p~! > 1 for existence of this integral is not satisfied. Moreover it

can be shown that the value obtained by evaluating the limit of the Riemann-Stieltjes

sum
n—1
lim W, (W, — W),
mesh(Tn)ﬁo ; z( tz+1 tz)
is dependent on the particular sequence of intermediate partitions (y; : i =0,...,n—

1) used. Therefore fOT W, dW; is not defined under this framework.
Incidentally,

Lemma 9. the quadratic variation of Brownian motion over the interval [0, t] is equal
to t.

Proof. Let T, = Y1~ (Wi,,, — Wy,)?. For each n we have

n—1

E(Tn) = ZE(Wti+1 _Wti)Q’
i=0
n—1

= Z(ti—l—l - tZ)a

=0

I

where the first equality holds because there are a finite number of terms in the sum,
the second is because Brownian motion is a Gaussian process.

Using the fourth moment of a standard normal random variable, we obtain

n—1
VCLT(Tn) = Z Var(WtHl — Wti)2,
=0

< 3tmesh(ry)-
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Now choose a sequence of partitions 7 = (7,;n > 1), such that ) ., mesh(r,) < co.
Such a sequence is obtained (for example) if mesh(r,11) = smesh(r,) as it would if

the successive refinements divided each interval in two. With this choice

ZVCLT(TH) < 3tz2in < 00.

n>1 n>1

Applying the Monotone Convergence Theorem to the sequence Sy = Zk (T, —

n=1
E(T,))?, and using Fatou’s Lemma

E (Z(Tn — ]E(Tn))2> = E(lim inf S;) < liminfE(S;) = Z Var(T,) < oo.

This implies >, (15 — E(7;,))? converges almost surely, which, in turn, leads to the
conclusion T,, — E(T},) a.s., thus

(W),= lim T,—t as.

mesh(7r)—0

This result is remarkable because, although the total of the sum

[y

n—

UW%+1__MGJQ’

Il
)

i
is a random variable for each n, the limiting value is non-random. The quadratic

variation of Brownian motion is very important in the work to follow.

7.1.3 Ito calculus

We would like a framework in which all integrals, fOT f(t)dg(t), are unambiguously
defined. The Lebesgue-Stieltjes integral does not exist for a large enough class of
functions. The problem being that the Lebesgue integral only exists if the limit of
the Riemann-Stieltjes sums are independent of the sequence of partitions chosen. We
shall therefore aim to mimic the construction of the Lebesgue integral but drop the

“independence of partitions” condition. So long as we consistently choose the same
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partitions, we should be able to develop a calculus with rules analogous to those of
standard integration; integration-by-parts, the chain rule, et cetera.
Consider a sequence of partitions 7 = (7,,;n > 1) of [0,7] with limiting mesh 0,

and intermediate partitions v = (y,;n > 1) of 7. Define

mesh( Tn)—)O

/Of(y)dg(y) lim Zf yi) (9(ti1) — g(t5)) -

All that remains is to specify a choice of y;, fori = 0,...,n — 1, and to be
consistent with that choice throughout. The following two choices have turned out

to be the most useful ones:

e y; = t; (left end point) leading to the Ité integral, denoted by

[ rramo),

and
oy = % (the midpoint) corresponding to the Stratonovich integral, denoted
by

[ 6o

Remark. It follows from the discussion in the previous section that if f is determin-
istic and differentiable with f'(t) < oo on [0,T] it doesn’t matter whether we use Ité ,

or Stratonovich to integrate, as the result will agree with Lebesgue.

Example 15 (The Ito integral of W, w.r.t. itself). We are aiming to evaluate

T n—1
/ W,dW, = lim ZWt] Wi — Wi, -
0

mesh( Tn)HO
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Recall Lemma 9 where we proved that the sum Z;C& (Wi, — Wy,)? can be replaced
by T in the limit. Now

—
=

n— n—

(Wtj+1 - Wtj)2 = |:(W7§'+1 - Wtf) - 2W, (Wtj+1 - Wtj) )
Jj=0 j=0
n—1
= W2—Wg—2) W,(Wy,, —Wy).
j=0

Taking limits mesh(r,) — 0, with T constant,
T
T:W%—Wg—z/ Wy dW,
0

which when rearranged yields

S S 2 Y
0

with Wy = 0 this becomes

T 2
/ WedW, = Wr T.
0 2

The above example indicates that the classical rules of integration do not hold for
It6 stochastic integration. If w : [0,7] — R is a deterministic differentiable function
with w(0) = 0 then by standard calculus,

/0 w(s)dw(s) = %w(T)Q.

This agrees with the result obtained using the Stratonovich integral,
T 1
2
/ WsodWs = -Wr.
0 2

In fact, the Stratonovich stochastic integral obeys the standard calculus as if it were
a regular integral. That is to say

/0 (W) 0 dW, = g(Wr) — g(W).
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This statement does not mean that the Stratonovich stochastic integral is a classical
(Riemann) integral. We only claim that similar rules hold.

Why bother considering any other integral type if all our established integration
theory can be applied to the Stratonovich integral? From a modelling point of view it is
often the wrong choice. To see why, think of what is happening over an infinitesimal
time interval. We might be modelling, for example, the value of a portfolio. We
readjust our portfolio at the beginning of each time interval and its change in value
over the infinitesimal tick of the clock is beyond our control. A Stratonovich model
would allow us to change our model now on the based on the value midway along
the next interval - sometime in the future. We don’t have that information when we
make our investment decisions.

The It6 integral, on the other hand, doesn’t look into the future. It’s value is
determined using the values at the left-hand end points of each infinitesimal time
interval. From the modelling perspective it is a more natural choice. To use Ito
calculus we will be required to learn some new theory; It0’s formula, the analogue
to the chain rule, for instance. Stratonovich integrals will act as important tools for
evaluating Ito0 stochastic differential equations. The two integral types are related
via the transformation formula. For now, we state some general properties of the Ito

stochastic integral.

General properties of the It6 stochastic integral

Proposition 10 (Conditions on integrands). Let C be adapted to the Brownian
filtration on [0,T]; C; may depend on Wy, for s <t but not for s > t. Also suppose
that the technical condition that fOT E(C?)ds < oo is satisfied. These are the condi-
tions on integrands for the Ito stochastic integral of C' with respect to W to be well
defined.

When the conditions on integrands are satisfied the Ito stochastic integral has the

properties:

1. For any two processes C and D satisfying the conditions on integrands and any
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two constants ¢ and d

T T T
/ [cCs + dDs] dW, = ¢ / CsdWs + d / DydWs.
0 0 0

2. For0<t<T,

T ¢ T
/ CsdW, =/ CydW, +/ CsdW,
0 0 t

3. The Ité stochastic integral process I;(C) = fot CsdWs, t € [0,T], has an expected
value of zero. Furthermore I,(C) is a martingale with respect to the Brownian
filtration F;.

4. The Ito stochastic integral satisfies the isometry property:

( /0 ' CSdWS>2] = /0 ' E(C?)dt.

The first two are properties in common with the Riemann integral. Property 3

E

reminds us of the previous material we have covered regarding martingales and sug-
gests that that theory will again be important. The process I;(C) will be of interest
in its own right, as such we may wish to calculate its variance. Given E([;(C)) = 0,
the variance is E(Z;(C)?). Property 4 is an identity which provides an alternate way

of calculating the variance of I;(C).

Example 16. Recall Lemma 6 where we showed W2 —1 is an martingale with respect
to the Brownian filtration. Notice that this is consistent with our statement that I;(C')
1s a martingale since

7

t
L(W) = / WsdW, =
0

I1to’°s formula

Now that we’ve established conventions for stochastic integration in terms of It6 and
Stratonovich, we need some higher level tools with which to work with. The first of
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these is It0’s formula; sometimes presented as 1t6’s lemma. It is a rule corresponding
to integration by substitution, roughly speaking:

[ sttspas= [ 1 ()" an

Given the stochastic differential equation of some process X = (Xy;¢ > 0) adapted
to the Brownian filtration, and a smooth (C?) function g, Itd’s formula provides a
method of extracting the stochastic differential and integral of the process Y defined
as Y; = g(Xy).

For the moment, we shall limit our discussion to It0 processes. This class does
not include all processes for which 1t6’s formula holds, but it is sufficiently broad to
handle the majority of applications. An Ité process is any process which has the (It6 )

stochastic integral equation form

t t
X=Xy + / s ds + / os dWs, (7.9)
0 0
with
T T
/ || dt < o0, / o dW; < oo.
0 0

The integral equation (7.9) is commonly written shorthand as
dXt = /.Ltdt+0t th (710)

Here, as usual, we are denoting by W Brownian motion. On its own the process
fot o5 dWy is called an Ité integral process.

Our presentation of It6’s formula will start by stating the result for any [t0 process.
This is a very useful formula. It&’s formula for functions of Brownian motion, for
functions adapted to the Brownian filtration, and functions of two or more adapted
processes can all be obtained from this first formula (7.11). We will then work through
the above mentioned cases as examples.

We shall hold off proving It6’s formula until Section 7.1.4 where we shall provide
a proof which holds for C? functions of any semimartingale. This general case encom-
passes not only Itd processes but also processes with possibly discontinuous sample
paths.
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Theorem 11 (It6’s formula for any It6 process). Let X; be an Ité process. If
g(x) is a twice continuously differentiable function, then the stochastic differential of
Y = g(X}) is given by
1
Recall that (X), denotes the quadratic variation of the process X up until time ¢.
For X defined by (7.10) the quadratic variation is given by

t
(X)t:/ olds.
0

By expanding the quadratic variation term we can evaluate Equation (7.11) two steps
further:

1
Y, = ¢'(Xp)dX;+ §g”(Xt)at2dt,
1
— o 0O+ (g () + S0 (X)),
The penultimate step involves replacing dX; by u; dt + oy dW; in the previous line.

Example 17 (Geometric Brownian motion). SupposeY; = exp(oc Wy+put). What
stochastic differential does Y; follow?

Let Xy = oW, + pt then dXy = odW; + pdt and Yy = g(X;) where g(x) = €*.
Applying Ito’s formula

1
dl/; = O'g,(Xt)th + (,U,gl(Xt) -+ iO'ZQH(Xt)) dt,
and noticing that g(z) = ¢'(x) = ¢"(x) and so Y, = g(X3) = ¢'(Xy) = ¢"(Xy), yields

1
dY; = oY, dW, + (uYt + 5021@) dt,

1
= Y, (ath + (u+ 502)dt> ,
Conversely, suppose we were given the stochastic differential

dY; = Yi(o dW; + pdt),
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and asked to find the process which follows this equation. We know that the solution
takes the form exp(oc Wy + vt) and matching the parameters reveals v = y — %02.
Thus

1
Y; = exp (O'Wt + (n— 502)15) :
which should be checked using Ité’s formula.

There are some functions for which It6’s formula takes a particularly simple form.
We shall now look at some of these cases and see how Equation (7.11) handles them.
These results may also be established by inspecting the partial sums

n—1
0) + Z (Xipiyn) — th))
=0

and taking the limit as the mesh tends to zero.

It6’s formula for functions of Brownian motion

Corollary 12 (It6’s formula for functions of W,). If g(z) is twice continuously
differentiable, then for any t

o) =90+ [ gdorgaw, L [ v yas. (r12)
Proof. Let Y; = g(W,), from (7.11)
AV, = g (W)W, + 3" (W)d (W),
Since (W), = [ ds =
4V, = g (W)W, + 5o (W),

which in integrated form is (7.12). O
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Example 18. What is the stochastic differential for Y, = W}, hence compute E(W})?
By 1té’s formula (7.12)

t t
V=Y + / AW2dW, + / 6W2ds.
0 0

Taking expectations, the expectation of the stochastic integral vanishes due to the

martingale property, and so
t t
E(Y;) = / 6E(W?)ds = / 6sds = 3t°.
0 0

It6’s formula for vector processes

Like any great formula, Equation (7.11) works for vector processes as well. Let X; be

an n-dimensional It6 process,

dXY = pidt+ondwW + -+ oppdW™

dX™ = p,dt+ o dW + -+ o dW ™

Or, in matrix notation

dX, = pdt + o dW,

where
Xt(l) M1 O11y---9y01m Wt(l)
Xt = ) ,LL = ) o = ’ Wt =
Xt(") I Onls- - Onm Wt(")
If g =(91,---,9,) maps R" into RP, and each component of ¢ is twice continuously

differentiable then Y, defined as Y; = g(X}), is also an It6 process. The SDE that YV
satisfies is

1
dY; = Dg.dX, + §D2g.d(X)t,
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where the kth component is given by

agk

in(’“) —

P9 ix@ x0)
Zax,ax, X,

The last term involves the covariation between X® and X).
For any two processes X and Y, the covariation between X and Y is defined as

N—-1

<X7 Y>t = lim Z(Xti+l - Xti)(YtiH - }/tz)

mesh(T)—0 %
1=0

Notice that the quantity (Y,Y), corresponds to the quadratic variation and is usually
written (Y),. If X and Y are both It processes with respect to the same Brownian

motion,
dXt = ,U,tdt + O'tth, dY;g = ’Ytdt + ,Otth, (713)
then the covariation of X and Y is

(XY), = (X +Y),— (X),— (1)),

1 t
N 5/(0s+ﬂs)2— oy = pyds,
0

t
= / Ospsds.
0

d(X,Y), is computed according to the conventions:

dX;dY; = d(X,Y),,
(dt)> =0, dtdW, = dW,dt=0, d(W),=dt.

The two variable case is the simplest way to illustrate It6’s formula in higher
dimensions. To justify its form consider the Taylor expansion of a function f(x,y),
which maps R? — R. Here p =1 and n = 2.

f(z,y) = f(xo, %)+ %(m — ) + %(y — %) +

0? 0? 0?
3o (@ =50+ 5 Ly = )+ 5@ = )y~ w).

2 9y??
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This suggests
o0 f
Oyox

_ 0 ) 162
det+—de;+— f(dXt)2+— fQ
26y2

(dYy)* +

dX,dY;.

Substituting
(dX;)* = d(X), =o7dt,
dYy)? = pidt,
and dXtdY;g = d<X,Y>t:O'tptdt,

gives an informal justification of the following result.

Corollary 13 (Itd’s formula for functions of two variables). If f(x,y) is a twice
differentiable function of two variables, and Z; is a process defined as Z; = f(Xy,Y;)
for any two Ité processes Xy and 'Yy from (7.13), then Z; follows the stochastic differ-
ential

10%f , o f

of of 1°f ,
oz dy 2922t 2 9y? tdt"‘a 97 orprdt. (7.14)

In the special case where one of the parameters is deterministic I1t6’s formula for

two variables simplifies.

Example 19. Find the stochastic differential of Z; = f(t, Xy).
By 1té’s formula (7.14) in Corollary 13

of 8f 1 82f 9 10%f 0% f
dz, = e —dX; + — 3t 2922 o, dt + §W(dt) TR dX,dt.
Both terms involving (dt)? and dX.dt are negligible, and so we are left with
of of 1°f ,
7y = —dX
dz, Gxd t+atdt+262 oy dt.

Integration by parts

In classical calculus there exists a formula which allows integration of functions which

have a product form. For differentiable functions v and v it states that

/u'(x)v(x)dx = u(z)v(z) — /v'(x)u(x)dx. (7.15)
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The integration-by-parts formula (7.15) is an easy consequence of the product rule

for differentiation

%(u v) = u'(z) v(z) + v () u(z). (7.16)

There is an analogous result in stochastic calculus. For any two It6 processes X
and Y,

d(XiY;) = Xy dY, + Y, dX, + d(X,Y),, (7.17)

which doesn’t look too dissimilar to Equation (7.16). Equation (7.17) is easy to
justify using Itd’s formula for functions of two variables; apply (7.14) to the function

f(z,y) = zy.
Example 20 (The stochastic differential for X, = ¢t W;). By the product rule (7.17)
dX; =tdW, + Wydt +d {t, W),
By convention d (t, W), = dt.dW; = 0, thus
dXy = tdW, + W, dt.

As an alternative method for reaching this result we could apply Ito’s formula with
Xi = g(t,W;) where g(t,x) =tzx.

Example 21. Suppose Y, has the stochastic differential equation
1
dY; = §Ytdt+Ytth’ Yo=1,

and let X; =t W;. What is the stochastic differential for X, Y;?
Use the product rule:

The first two terms may be simplified by substituting the rules we know for dX; and
dY;. For the third term recall the convention d(X,Y), = dX,dY; and substitute for
dX; and dY; to get

1
d(X,Y), = (tdW, + W, dt) (51@ dt + Y, th,> .

All terms involving dt dW; or (dt)? are taken to be zero, and (dW;)? can be replaced
by dt, this leaves us with d(X,Y), =tY;dt.



CHAPTER 7. STOCHASTIC CALCULUS 110

7.1.4 Processes with jumps

Brownian motion is good for modelling small, continuously chaotic, changes in a
process. The Poisson process, in contrast, is good for modelling random shocks to
the system. Shocks that occur infrequently but which are large in comparison to the
Brownian noise, are well modelled by a Poisson process.

For this subsection let X; denote the aptly named jump diffusion process
t t
X =X +/ s ds + / os dW, + J;. (7.18)
0 0

The J; term represents the inclusion of a Markov jump process which has been added
to the diffusion (7.1).

The paths of J; are step functions characterised by the sequence of jump times
and corresponding jump sizes. Since neither of these things are known in advance,
a probabilistic construction is the best one can do. The process at some time ¢ is
at X;. With some probability, say A(X;)dt+o0(0t), in the next instant (¢, t+4t], J; will
make a jump. The probability of two or more jumps in an interval is o(dt). Given
that a jump has occurred, the random jump size is distributed according to some
measure I:I(Xt, -). Between jumps J; is constant and X; behaves like the diffusion
process (7.1).

The calculus of jump processes is widely known on a superficial level. It is common
for authors to simply quote the rules without giving a formal justification. Part of
the reason for this neglect is that the underlying measure theory is quite difficult, and
in practitioner often only need to end rules.

We shall briefly discuss the underlying probabilistic basis, before describing the
calculus. Our motivation is to achieve a level of competence which will allow us to be
not so overwhelmed by the more difficult texts such as Jacod & Shiryaev (1987). This
deeper insight should allow us to not only understand how the calculus rules arise,
but to modify them for processes which don’t satisfy the standard assumptions. You
are encouraged to develop an interest and seek the details which have been skipped

in the following sub-subsection, even though it will not be assessed.
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The stochastic basis

The approach that we shall follow for the uses random measures (Jacod & Shiryaev
1987). The theory behind this approach is much less widely known than the rest of
the stochastic calculus in this chapter. The random measure approach provides an
unambiguous, tractable description of the stochastic integral defining a jump process.

Use the measurable space (R, B(R")) for time, and (R, B(R)) for space. Here
Rt = [0,00), and B(A) denotes the Borel sets of A. For our purposes, an integer
valued random measure on (R* x R, B(R") ® B(R)) is a family of functions N =
(N(w;t,y)) such that

1. N({0} x R) = 0, almost surely;
2. N({t} x R) = 0or1, depending on whether a jump occurred at time ¢ or not;

3. and forany A =T xY € B(R")®B(R), N(A) takes valuesin N = {0,1,2,...}.
For a fixed set of jump types Y € B(R), (N(¢,Y);t > 0) may be thought of

as a random process which realises the number of jumps in [0, ¢] taking X from X
to X; + q(w; s, Xs) with g(w; s, Xs) € Y. This might be the set of all jumps which
cause some portfolio to gain $¢ million, for example. More likely, Y could be the set
of jumps which cause the portfolio to change in value by more than g percent. To
determine whether a jump belongs to such a set, there needs to be information about
the jump diffusion X at time ¢. It is Markovian though, since the described pure
jump process is independent of F;, s < t.

The main result which allows a tractable description of the jump process using
random measures is summarised in Theorem 1.8 of Jacod & Shiryaev (1987), and
also in Theorem 9.14 of Klebaner (1998). There exists a predictable measure, say NP,
such that for every measurable random process ¢ on 2 x RT x R

t t
| [antasdy - [ [ anwwids,dy)
0 JR 0 JR

is a local martingale. NP is called the compensator of N. Furthermore, there exists a
predictable process A and a kernel K such that the function N? may be written

NP(w;dt,dy) = dAy(w) K (w; t, dy),
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which is short for

t t
/ /qup(w;ds,dy):/ /qu(w;s, dy)dAg(w).
0o Jr 0o Jr

This disintegration is not unique. The compensator process is predictable and of finite
variation and therefore can play a role in the semimartingale decomposition.
In the case of integer-valued random measures there is a set of stopping times

(i34 > 1) (random times at which the process jumps) which allows us to write
Jy = / q(w; s, X,)N(wids,dy) =Y q(w; 75, X0,) 1<y,
[O,t]XR i

where 1 is an indicator function

1 if A holds,
14 =
0 otherwise.

It will be useful to know how to calculate the quadratic variation of any semi-
martingale. The decompositions of Section 6.1 will be useful in this task. Recall
that any semimartingale can be decomposed into a local martingale M; and a finite

variation process Ay,
Si=So+ M+ A, My=A,=0.
Furthermore, any local martingale M may be decomposed into
M, = Mf + ME,

where M¢ is a continuous local martingale, and M? is a purely discontinuous local
martingale.

The continuous part of the jump diffusion process X; defined by Equation (7.18)

t t
sz/ ,usds—l-/ o, dWs,
0 0

is
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and the purely discontinuous part is
Xf=J=> (X,— X,).
s<t

Neither of these are necessarily local martingales, we may need to find the compen-
sators to make further progress.

Here are some facts that will be used to prove Theorem 14.

e recapping the definition of a purely discontinuous local martingale M¢: for any
continuous semimartingale X¢ we have <M d X C> , =0

e for any two purely discontinuous semimartingales X¢ and Y,

n—1
(XY, = DG, X, Y = 3 (X~ X ) (¥~ ¥
=0 s<t

We shall often denote X; — X,- by AX;.
e for any continuous process of finite variation Af and any other semimartingale
we have (A°, X), = 0.
The calculus of jumps

The following theorem is the generalisation of Theorem 11 from It6 processes to any
semimartingale. The proof is similar to that found in Jacod & Shiryaev (1987).

Theorem 14 (It6’s formula for any semimartingale). Let X be a semimartin-

gale, and f € C*(R). Then f(X) is also a semimartingale and is governed by the

differential
t
F(X0) =F(X0) + / F/(X, )X, + / S (X, (X0,

+ )X, X, )AX,],

s<t

(7.19)

where (X°€), denotes the quadratic variation of the continuous part of X.
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Proof. We shall prove the result first for functions f which are polynomials.

The result is trivially true when f(x) = x. If we can prove the formula also holds for
f(z) = zg(x) by assuming (7.19) holds for g, then by induction (7.19) must hold for
any polynomial.

To simplify the notation, associate to any g € C*(R) g defined as

g(z,y) = g(z) — g(y) — ' (y)(x — y).

By the product rule, then the inductive assumption

Fx) = s+ [ X, dg(x,) + / (X, )X, + (X, g(X),,
= H(X) /Xs §(X,)dX, +/ Ly, g"(X,)d(x),  (7.20)

3 X d(X Xe) + / 9(X,-)dX, + (X, g(X)),

s<t 0

Computing (X, g(X)), directly using (7.19), and noting that the second and third
terms in (7.19) are processes of finite variation; the second being continuous, the

third being purely discontinuous.

KX, = [ 06X, +0+ T AXAGN X, )

_ /Ot J(X,-)d ((XC)S + Z(AX3)2>
£ 3T AX[G(X,) — g(X,n) — ¢ (X, )AX,
_ /Otg'(xs)d<XC>S+ZAXs(g(Xs>—g(XS>>. (7.21)

s<t

Combining equations (7.20) and (7.21) verifies that f satisfies Equation (7.19).
Since f is C? we can always find a polynomial g which will match f and its
partial derivatives of first and second order. An application of Lebesgue’s Domi-

nated Convergence Theorem shows that we can approximate each of fot f1(Xs-)dXs,
fo f"(X-)d(X€),, and }° f(X,, X,-) arbitrarily close using a polynomial g. [
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In the particular case of the jump diffusion (7.18), It6’s formula (7.19) may be
evaluated further. Observing that

/Otf’( L)dX, = /,utf ds+/atf AW+ ) (X

s<t

[ 3o, = [ oo as

enables us to write It6’s formula for the jump diffusion as

t 1 t
FOX) = £O00) + [ (X, 14502 (X s+ [ on (X )aw.
0 0

+ 3 (f(X) = f(X,-)).

s<t

and that

One can easily identify the continuous and purely discontinuous parts of this process.
For many applications, we may wish to calculate the various moments of f(X;). If we
can identify the compensator process which will make the purely discontinuous part
of f(X;) a martingale, then evaluation of E(f(X};)) will be greatly simplified.

Recall that A\(x) denotes the rate at which jumps occur when the process X; is
at x. Also remember that the distribution II(Xj,-) specifies the jump sizes at the
times of the jumps

L
PI‘(JTH_I - JT,; S y‘XT:_I) = / H(X - ’dy)

Tit1
—0oQ0
The quantity

m(XTil )

) = Ea (Jrps — | X2, ).

is the expected size of the (i + 1)th jump, given the position of the process X just

before the jump.

The compensator A; of the jump process is given by

. ¢
At:/ /qu”(w;ds,dy) = /)\(Xs)/qu(Xs’di‘/)ds’
0o JR 0 R

_ /0 A )m(X, )ds.
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It follows that the jump process can be written as

Jp = Ay + M,
t
_ / AKX )m(X.)ds + M,
0

where M; = J; — A; is a purely discontinuous local martingale. Thus we have the

stochastic differential of the jump diffusion

i t
X =X, +/ [ dS +/ osdWs + / q(s, X5)N(ds, dy),
0 0 [0,t] xR
given as
dX; = (e + MX)m(Xy)) dt + o:dW, + dM,.
It follows that A = [ A\(X,)m/ (X,)ds, where

m! (X

Ti+1

) =B (f(Jrups) = F()

X - )
i+1

Is the corresponding compensator for the new process f(X;), chosen such that Mtf =
dost Af(Xe) — Al is a martingale. The expected value of f(X;) is

E(f(X:)) = E(f(X0)) + E [/0 F1(X=) (s + A(X - )m! (X,-)) + %off”(Xs-)dt .

The quadratic variation of M; is obtained in the following manner

<M>t = <J_A>t’

= (J),, since A, is of finite variation
n—1

= lim Z(Jti+1 - Jti)Qa

mesh—0 <
=1

= Z q%. 1{n<t}-
%
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Thus the process (M), is a pure jump process generated by the sequence (7;, ¢,). It’s

compensator is

t
/ AKX )w(X,)ds,
0
where

v(X

Tit1

) = Eq ((JTH—I B J”)2 XT;I).

For this reason the convention d (M), = A(X,)v(X;)ds is often used.

7.1.5 Girsanov’s Theorem

So far in this section we haven’t mentioned the underlying probability measures be-
hind our stochastic processes. We have developed some basic tools for manipulating
stochastic equations, but they are manipulation of functions of Brownian motion, not
a manipulation of measure. This apparent neglect is somewhat surprising given the
remarks of Chapter 6 with respect to the important role the theory of martingales
has in option pricing. Actually, we haven’t ignored the importance of measure, just
suppressed the dependence on it in our notation.

It is often the case that a stochastic process may be converted to a martingale
by changing the underlying probability measure. Girsanov’s Theorem tells us the
conditions required for such a measure to exist and the form that the Radon-Nikodym
derivative takes for this change of measure. Change of measure is useful for risk-
neutral pricing of financial derivatives, solving stochastic differential equations, and
calculating statistics of interest such as stopping time distributions.

Given a drifting Brownian motion the Cameron-Martin-Girsanov idea is to define

a random variable A as

T 1 (T
A =exp (‘/ YdWy — —/ %Zdt> )
0 2 Jo

g lg?
where 7; corresponds to the drift process; in the case above v = v = % The

following properties will then hold (check these)
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e A>0;

e the measure QQ defined as
Q4) = / AdP, (7.22)
A

is a probability measure, and A is the Radon-Nikodym derivative %;
e Q defined in (7.22) is the risk-neutral probability measure.

Theorem 15 (Girsanov’s Theorem). Let W; be a Brownian motion on (2, F,P).
Suppose 7y, to be a process adapted to the accompanying filtration F;. Define

t
W, =W, +/ Vsds,
0

T 1 T
A =exp (—/ YudWy — 5/ vidU> ;
0 0

and define a new probability measure Q by

and

Q) = [ Ade

then, provided Ep <exp(%foT ’yfdt)) < oo, under Q the process W, is a Brownian

motion. The random variable A is the Radon-Nikodym derivative of Q with respect
to P.

Corollary 16 (Converse to Girsanov’s Theorem). If W; is a P-Brownian mo-

tion, and Q is a measure equivalent to P, then there exists a vy such that

t
Wt = Wt +/ ’)/st,
0

15 a Q-Brownian motion.
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The effect of changing measure using Girsanov’s Theorem is to change the mean.
The variance does not change. In consequence
e martingales may be destroyed or created; but
e volatilities, quadratic variation, and covariations are unaffected.

Example 22. Suppose that X s a stochastic process which satisfies the stochastic

differential equation
dX; = oy dWy + pdt,

with Wy a P-Brownian motion. Is there a measure Q such that
dX; = odW, + vdt,

where Wy is a Q-Brownian motion?
Rewrite dX; as

dX, = o (th + (“t _ ”t> dt) + ydt,

Oy

then provided y; = M satisfies Ep (exp(%fOT yfdt)) < oo by Girsanov’s Theorem

we have

t p—
Wt:Wt+/ Hs Vst,

0 Os

1s a Q-Brownian motion. Furthermore, under Q
dX, = 0, dW, + vdt,

If in the above example v; was chosen to be identically 0, then the drift would
have been eliminated. Thus, we might find the solution to the stochastic differential
equation dX; = 0,dW, + p.dt by looking for a solution to dX; = o,dW; and applying
the change of measure. In this way, Girsanov’s Theorem provides us with yet another

tool for solving stochastic differential equations.
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7.2 Solving SDEs

We know have some of the tools which allow us to find the stochastic differential
equation of some process given its definition. Conversely, given the stochastic differ-
ential dX; = a(t, X;)dt + b(t, X;)dW;, we can sometimes find an expression for X;. In

this section we present the solution to a few special SDE’s.

Definition 2. A strong solution to a stochastic differential equation is a function
X = F(t,(Ws, s < t)) which satisfies the integral equation

t t
X, = / alt, X,)ds + / b(t, X,)dW,.
0 0

The white noise process is defined as & = %. Since W, is nowhere differentiable,
this is not a derivative in the usual sense. A more sensible definition might read: if

oy is the intensity of the noise at a some point in space and time, then

t t
/ O'té-tdt = / O'tth.
0 0

In other words, whenever we see &;dt we can replace it by dW; and vice-versa.

Example 23 (Growth with uncertain interest). Recall, B; denotes the value $1
grows to after time t. If invested with a continuously compounding interest risk-free
rate v, then By satisfies the ordinary differential equation % =rbB;.

Now suppose instead that the interest rate is modelled as r+oc&;. The ODE becomes
an SDE: % = (r + 0&;) By, or in the standard form

dBt = T'Btdt + O'Btftdt.
Noticing &dt can be replaced by dW; yields
dBt = TBtdt + O'Btth,

which one might recognise as the SDE of geometric Brownian motion,

0.2
r— —

B; = exp (( 5 )t + aWt) .
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The solution to some SDE’s can be found by making an educated guess. If we
know a few common forms and their solutions then given a new SDE we may be able
to guess it’s solution modulo some unknown constants, and then check using Ito’s

formula.
Lemma 17. The process U, = exp(Y; — 2 (Y),) satisfies the SDE
dU; = UydY;.
Proof. Put U, = €% then by It6
dU, = U,V + %Utd V),

but V; =Y, — $ (Y),, so dV; = dY, — 3d (Y),. The quadratic variation process (Y'), is
deterministic (d (Y'), = o7dt say), and therefore contributes nothing to the quadratic
variation (V),. In other words d(V'), = d(Y),. The stochastic differential for U; must
be

1 1
dUt = UtdY; - EUtd <Y>t + iUtd <Y>t .

We have shown that
Ut — e}/t*%(y)t N dUt == UtdY;f:

and so, whenever we see a stochastic differential of a similar form to dU; = U,dY;, a

good guess might be to look for a solution of the form U; = eVe=3 (V)

Example 24. Suppose we wish to solve the SDE we derived in our uncertain interest
rate model (Example 23)

dBt = ’/’Btdt + O'Btth.
Put dR; = rdt + odW,, then dB, = BydR;. Both of these equations are easy to solve:

R, = rt+oW;, with (R), =0t

Bt = eRt_%<R>t .
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Substituting the known values for R, and (R), suggests a solution

1
B; = exp ((r — 502)15 + aWt) ,
which should be checked with It6 to ensure B, satisfies the SDE

The next example introduces us to a process which has been suggested as an al-
ternative to pure Brownian motion as the basis for stock price models (Hall, Mathews
& Platen 1996).

Example 25 (Ornstein-Uhlenbeck process). The Wiener process (Brownian mo-
tion) is good for modelling motion of a particle over long periods, however if we look
closely it is a bad approrimation to local movement of a particle since the paths are
nowhere differentiable. According to Newton’s laws of physics only particles of zero
mass can follow such paths. The Ornstein-Uhlenbeck process assumes the velocity
(rather than the position) of a particle undergoes Brownian motion. The ramifica-
tions are that the velocity paths are continuous and the sample paths of the process
itself are almost surely continuously differentiable (smooth) functions of time.

The Ornstein-Uhlenbeck process follows the Langevin equation
dX; = cXdt + odW;. (7.23)

This process is one of the standard example given in most time-series courses: imag-
ine we are observing a continuous-time process at discrete intervals with dt = 1,

Equation (7.23) might be equivalently represented

Xip1 — Xy = Xy+o(Wip — W),
or X‘H—l = (C —+ 1)Xt -+ O'Zt,

where Zy ~ N(0,1), fort=0,1,2,....
In order to solve (7.23) consider the substitution Y; = e~ X,;. This process is of
product form, a deterministic part e~ times the random process X;. The covaria-

tion between the two factors of the product is zero since one of the factors is purely
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deterministic. By the product rule

dY; = e “dX;+ Xyd(e ) + 0,
= e %dX, — cX.e “dt,
= e “cXydt + odW;) — cXe dt,
= e dW,,

which as an integral equation reads
¢
Y, =Y, +/ oe” “dWs.
0
Substituting back to get Xy and noting that Xy =Y
¢
e X, = X, +/ oe “dWy,
0

t
X, = eCtX0+eCt/ oe” “dWs.
0

7.2.1 Solving linear SDEs

Stochastic differential equations for which there exist strong analytical solutions are a
rare occurrence. In this section we consider a class of stochastic differential equations
for which a unique strong solution can always be found. The class being that of the
linear stochastic differential equation. We shall solve the general linear SDE and in
doing so learn a general method by which every equation of this class may be solved.

The general linear stochastic differential equation takes the form
dXy = (ou + BiXe)dt + (v + 0:.X)dWy. (7.24)

It is linear in the sense that the parameters a(t, z) = oy + Bz and b(t, ) = v+ d,x are
linear in z. The functions a(¢, z) and b(¢, ) must satisfy the conditions on integrands
(as stated in Section 10) for the differential dX; to make sense.

We have seen a few linear stochastic differential equations already:

e Brownian motion with drift dX; = adt + vdWj;
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e Geometric Brownian motion dX; = SXdt + d X;dW;

e Ornstein-Uhlenbeck process dX; = SX;dt + ydW;;

and soon we shall meet the
e Vasicek interest rate model dX; = (o + 8X;)dt + ydW,.

To find a solution in the general case with all non-identically-zero parameters,

look for a solution of the form

Xt = Ut‘/;a (725)
where dUt = BtUtdt + 5tUtth; U() = 1,
and d% = atdt + btth, % = Xo.

The parameters a; and b, are chosen such that Equation (7.25) actually holds. One
way to determine a; and b; is to apply the product rule to X; and equate the coeffi-

cients with those of Equation (7.24). By the product rule

dX: = d(UWV,),
= UdV, + VidU, + (U, V),
= Ut(atdt + btth) + W(ﬁtUtdt + 5tUtth) + Utétbtdt.

Pattern matching with Equation (7.24) leads to the system

aUp + BU Ve + Updehy = aw + Bi Xy,
bUy +Vio Uy = v+ 6:Xy.

These equations are satisfied if a; and b; are chosen such that
btUt = Yt and CLtUt = O — 6t7t-
Thus

ta—é’y t,y
Vi=Vo+ | 20Ty 1> aw,.
f o+/0 U 8+/0 U
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Now we need to find an expression for U;. The differential dU; may be rewritten as
dUt = UtdY;;, where dY;g = ,Btdt + (Stth.

Lemma 17 tells us that U; has a solution in terms of Y; given by

1
Up = exp(Yy — 5 (Y),)-

After substituting ¥; = fot Bsds + f(f 8sdWs, and (Y), = fot 62ds, Uy becomes

t 1 t
Uy = exp (/ (Bs — §5f)ds —|—/ (55dW5> i
0 0

Putting the two parts U; and V; together we find a solution to the general linear

stochastic differential equation:

Lemma 18. The general linear stochastic differential equation
dX; = (o + B Xe)dt + (v + 6:.X;)dW,,

has a solution given by

- 5575

tCk t,)/
X:X+U/ ® @+U/—%m,
t 0 tO Us toUs

where Uy s given by

t 1 t
U, = exp (/ (8, = 507)ds +/ 5SdWS) ,
0 0

Example 26 (The Vasicek interest rate model). This is one of the standard mod-

and Uy = 1.

els for describing the time value of money. The interest rate for borrowing and lending
s not assumed to be a constant, but a random function R; of time t. In the Vasicek

model it is given by the linear stochastic differential equation

dR; = c(u — Ry)dt + odW,. (7.26)
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This is a linear stochastic differential equation, the same kind as referred to by

Lemma 18, and so we could simply read off the solution with
oap=cp, Pr=-c, =0, andd =o,

or we could solve the equation using the method used to justify the Lemma.
Look for a solution of the form Ry = UV, where

dUt = —CUtdt, U(): 1, (727)
and dV, = adt +bdW;, Vo= Ry.

Now Equation (7.27) is an ordinary differential equation resulting in the purely de-

terministic process
Ut = e*Ct.

Before we can write an expression for V; we need to find a; and by. If we compute
dR; in terms of dVy (and in turn a; and by) then by comparison with Equation (7.26)
we may form a solvable system for the unknowns. By the product rule
dRy, = UdV;+V,dU, +d(V,U),,

= Utatdt + Utbtth — C‘/;;Utdt (728)
The covariation term d (V,U), makes no contribution because the process Uy is deter-
ministic. Also note that V; is being chosen such that R, = U;V;, and therefore the
term —cV,Uydt is —cRydt. Equating the coefficients of dt and dWy in Equation (7.28)
with those of (7.26) yields

Uay — ViU = c(p— Ry) = a; = cue®,

o = Utbt — bt = O'GCt.

Thus
t t
vV, = VO—{—/ cue“ds—!—/ oedWy,
0 0

t
= Vo+pu(e®—1) +/ oe“dWs.
0
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And so

t
Ry = Roe ™ + p(1 — e ) + e_Ct/ oe*dWs.
0

7.2.2 Solving SDEs by Ité’s formula

It is sometimes possible to reformulate a stochastic differential equation into a solvable
system of partial differential equations.
To set the scene, imagine we are given and asked to solve

dX, = p(t, X;)dt + o(t, X,)dW, (7.29)

we can speculate that the solution X; of this equation follows a function f(¢, W)
taking time ¢ as a parameter and driven by Brownian motion W;. If the function
f(t,x) has continuous derivatives of the second order then we can apply Itd’s formula

and calculate

_ 9f,  9f LS o2 L8 e OF
dX, = 5 dt+a th+23t2 (dt)?® + 5 52 5 (dWy) +8taxdtth’
of 10*f af

where we’ve ignored all terms involving either (dt)? or dtdW;. Equating coefficients
with those of (7.29) leads to the system of partial differential equations

_of 10*f
plt,z) = E+§@’
of

o(t,z) = 3

If we can solve this system then we have found a function f(¢, ) such that the process
X = f(t, W,) satisfies the stochastic differential (7.29).

Example 27. Suppose we are asked to solve
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If X has the form f(t,W;), then

_(of 18°f of
dXt = (E + 5@) dt + 6—th,

which leads to the system of PDEs:

_af 18
L= 5 3g
_of

Differentiating the second equation with respect to x reveals 2 = a 9L and substituting
this into the first PDE yields 1 = af + 12 or % = 0. So f is constant in t and

% = 2z. Thus f(t,z) = 2° + ¢ for some constant c. Using the initial condition

(0, Wy) = X, to determine ¢ we have X, = Xo + W.

Example 28. Suppose we are asked to find a process X; which follows the stochastic
differential

dXt = ,U,Xtdt + O'Xtth.

If X, = f(t, W), then

of 101, . 0f
dX, = <8t+ 2 922 )dt—{—a dWi,

which leads to the system of PDFEs:

_ Of 1%f
W= e T
_ of of _ *f
O'f = % =4 U%—w
The first PDE becomes
f_ o 101
M= ot 2%
_of 1,
= 8t+20 f-
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After simplifying the system becomes

_of _9of
ot oz’

which may be solved using separation of variables. It is easy to check that

(n—50%)f of
F(t,2) = Actn—oeres

satisfies the system of PDEs. And that the process X; defined as
X, = Xoe(“_%a2)t+awt

satisfies the original stochastic differential equation.

7.2.3 Solving SDEs by Stratonovich calculus

Analogous to the Itd stochastic differential equation is the Stratonovich stochastic

differential equation

t t
X; = Xo +/ wu(s, Xs)ds +/ o(s, Xs) o dWs,
0 0
or in the equivalent notation
dXt = /,L(t, Xt)dt + O'(t, Xt) 9] th

For the Stratonovich integral to be defined there is a set of criteria which the integrand
must satisfy. These conditions are similar to those for the definition of the It6 integral.
For our purposes it is enough to know that for some integrand Y; adapted to the
filtration of X, fot Y,dX, exists implies fot Y, o dX, is also defined. And furthermore,
if the Stratonovich integral of Y, with respect to X, does exist then it satisfies the

transformation formula:

t i
1
/Y’Sodst/}/SdXs+§(Y,X>t.
0 0

The transformation formula is a rule which allows us to convert from Stratonovich to

It6 calculus and vice-versa.
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In Stratonovich calculus classical rules such as the chain rule and product rule
hold exactly. The proofs are quite simple. Start with It6’s formula or the It6 product

rule and apply the transformation formula.

Theorem 19 (Integration by parts: the Stratonovich product rule). For any

two continuous processes X; and Y; adapted to the same Brownian filtration
Od(Xt)./;) = Xt o d}/; + }/;5 o dXt
Proof. Left as an exercise. O

Theorem 20 (Change of variables: the Stratonovich chain rule). For f three

times continuously differentiable
Od(f(Xt)) = fI(Xt) O dXt

Proof. First note that the It6 and Stratonovich integrals coincide when the integrand

is deterministic (see Remark 7.1.3). In particular

[ redtsean = [1atee). o odtf(n) = (),
Now by Ito’s formula
AF(X)) = F)AX,+ 3 f(X)d(X),.
Put V; = f'(X,) and apply the transformation formula
Y,dX, =Y, 0dX, — %d (X,Y),,
to get
AF(X0)) = F/(X) 0 dX, = Sd (X, V), + 3 "(X)d (X),.

The result is proven if we can show f"(X;)d(X), — d(X,Y), = 0. Applying Itd’s

formula once again

dY, = f"(X)d X, + %f”,(Xt)d<X>ta
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and multiplying through by dX; we have

dX,dY; = d (X,Y), = f"(X,)d (X), + 0.

The second term is taken to be negligible since it contains dX,;d (X),. O
Example 29. Consider the Ito stochastic differential equation
1
dXy = §f(Xt)fl(Xt)dt + f(Xe)dW;. (7.30)

Applying the transformation formula to f(X;)dW;, this equation may be rewritten as

an equivalent Stratonovich stochastic differential equation
1 1
dXt = §f(Xt)fl(Xt)dt + f(Xt) o th — §d <Y, W>t y

where Y, = f(Xy). Now d (Y, W), = dYdW, and dY; = d(f(Xy)) = f'(X}) o dX;, and
50

1 1
dX, = 5f(Xt)f’(Xt)dt + f(Xy) 0 dW,; — §f'(Xt)d (X, W),,
1 1
= 5f(Xt)f’(Xt)dt + f(Xy) 0 dW; — §f'(Xt)f(Xt)dt.
The Stratonovich stochastic differential equation equivalent to (7.30) is given by

dXt = f(Xt) 9] th

We try to solve this equation using the classical rules of calculus. That is to say,

we attempt to solve the ordinary differential equation
dx = f(z)dw(t),

using separation of variables

z(t) 1 t

Hopefully one can solve this equation and replace x(t) by X; and w(t) by Wy to get a
solution to (7.30).
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Example 30. A slightly more complicated Ito stochastic differential equation is given
by

dX, = (qf (X)) + % FOO) /(X)) dt + F(X,)dWs, (7.31)

where q is a constant. Applying the transformation formula to f(X;)dW; as in the

previous example we get
dX, = qf (X,)dt + f(X,) o dW,, (7.32)
which we atm to solve via the equation
dz(t) = q¢f (z(t))dt + f(z(t))dw(t),

where w(t) is a differentiable function. Separation of variables leads to

z(t) o
/;c(o) 7@ x = qt +w(t) — w(0).

If the left-hand side can be evaluated to say

then
Xi =97 (9(Xo) + gt + Wy = W = 0),
satisfies the Stratonovich stochastic differential Equation (7.32) and hence it is also

a solution to the Ité stochastic differential (7.31).

7.2.4 Solving SDEs using Girsanov’s Theorem

One of the applications of Girsanov’s Theorem lies in solving certain nonlinear SDEs.
Such SDEs are unable to be handled by the methods mentioned so far.
Consider the class of SDEs which fit the form

dXt = f(t, Xt)dt + C(t)Xtth, (733)
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where f: R x R - R and ¢ : R — R are continuous functions, and W is a standard
Brownian motion under some measure P. Our use for Girsanov’s Theorem is to
completely remove the drift f(¢, X;)dt. Under the new measure, Q, dX is much
easier to solve. Then, provided we can determine exactly how much the P-Brownian’s
drift was changed, the solution (under Q) can be converted back to give the solution
under P. The final step needs to be qualified by “provided”, since it requires us to
solve a differential equation.

Suppose that we choose a measure Q under which the process W is a standard
Brownian motion and W = W — J. Ot vsds for some adapted y;. Under this new measure,
replacing dW, by dW; + vdt, Equation (7.33) becomes

dX; = (f(t, Xy) + c(t) Xoy) dt + c(t) X, dW,. (7.34)

Now (if possible) we should choose 7; such that f(¢, X;) 4+ c¢(t) Xyy: is identically zero.
Doing so reduces (7.34) to dX; = ¢(t) X,dW,, thus

_&:me<lz@mh—%A%@%a.

Now changing back from Q to P
t 1 t
X, = Xpexp (/ c(s)(dWs — 7ysds) — 5/ 0(8)2d8> :
0 0
t t 1
= Xpexp (/ c(s)dW; — / c(s)ys + 56(8)2618) , (7.35)
0 0

which, once 7; has been determined, will be a solution to the problem (7.33).
We still need to solve for v, in the equation f(t, X;) + ¢(t) Xy = 0. An ODE is

extracted using a clever change of variables. Put

Y; = exp (— /Ot C(S)VSdS) :

then the equation we need to solve is

[, X)) + )Xy =0,
f(ta Ft_IY;S) + C(t)Ft_IY;t’Yt =0,
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where F; ' = exp (— fot c(s)dWy + %fot c(s)st). So
—F
Y, = t, F 1Y), 7.36
t C(t)’)/tf( t t) ( )
but log(¥;) = — fot ¢(s)7sds, which can be written Y%% = —c(t)y:. Multiplying this
identity on both sides of Equation (7.36) yields

a%
dt

which is a deterministic differential equation for Y;. Solving this equation will imme-

= Ft f(t’ Ft_ln)a

diately allow us to write down the solution to (7.33).

Example 31. Solve the SDE dX; = rdt + aX; dW;.
Under the change of variables W, = W, + fot vsds the problem becomes that of solving

dXt = OéXtth;
0 =r4+ Oth"}/t, Vt.

Now dX; = othth implies

X, = exp <aWt — —a’t

t
exp (—a/ 75d5> ,
0

= GiYy, say
If Y, = exp (—a fg vsds), then % = —avY;. Thus the problem 0 = r + a Xy,
reduces to
T+aGtY;ffYt = Oa
dY;
= Gi—.
" at

Thus

1 K 1
Xy =Xy +rexp (aWt — §a2t) / exp (—aWt + §a2t> ds.
0
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7.3 Exercises

1. Let {W,;}:>0 denote a standard Brownian motion. Calculate the two integrals

(a) limmesh('rn)—w Z;L:_é Wtj+1 (Wtj+1 - Wtj),
T . n—
(b) Jy W0 dW, = limmesn(r,)—0 Yy 3(Wi s + Wy, ) Wiy, — Wiy),

This is the Stratonovich integral of W; with respect to itself.
2. Apply Equation (7.14) to the function f(z,y) = zy to obtain the product rule.

3. Using It6’s formula deduce that W2 — ¢, W — 3tW,, and W}* — 6tW? + 3t* are
all martingales.

4. Find f(z) such that f(WW; + t) is a martingale.

5. Use Itd’s formula to write down the stochastic differential equations for the

following
(a) t*Wy;
(b) exp(cW; — %0215);
(C) f(ta Xt7 Y;)

6. Suppose St is lognormally distributed with log(Sy) ~ N(uT,o*T). Use a

change of measure to calculate E ((S7 — K)T) for constant K.
7. Solve dX; = pudt + (v + o Xy)dW;.
8. Solve the Langevin equation for the Ornstein-Uhlenbeck process.

9. The Brownian bridge from a to b follows the linear SDE

b-Y,
1—t¢

4y, = dt+dWy; 0<t<1,Y,=a.
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10.

11.

12.

13.

14.

15.

16.

17.

Verify that

1

— S

¢
Yt:a(l—t)+bt+(1—t)/1 dWg, 0<t<1.
0

Solve dX, = X3dt + X2dW,.

Verify that X; = sin(W;) solves dX; = —%Xtdt + /1 — X2dW,, with Xy = 0,

for all times up until W leaves [—7, T].

Solve dXt = L Xtdt + Lth

1+t 1+t

By using the It6 -Stratonovich transformation formula solve
1 t t
dX, = 5n /0 X ds + /0 X" dW,.

Redo Example 30 for the particular case f(z) = x + 1. Check that X, is given
by —1 + e? W,

Check the answer quoted in Example 31 by solving the SDE using the method
of Section 7.2.1.

Solve dXt = Xitdt + O[Xtth.
Apply the solution method of Section 7.2.4 to study the family
dX, = XPdt + aX,dW,,

where « and 3 are constants.



