Chapter 8

A semimartingale market model

In this chapter we shall apply the theory of stochastic calculus and differential equa-
tions to a selection of economic problems.

Semimartingale market models are mentioned in (ksendal (1998), Karatzas &
Shreve (1991), Klebaner (1998). These books have a focus on stochastic calculus and
touch on finance as an application of the theory. Texts such as Lamberton & Lapeyre
(1996) and also Musiela & Rutkowski (1997) have the focus reversed.

Martingales have been a recurring theme throughout this course. As early as
Chapter 3 we saw the risk-neutral valuation formula emerge as a convenient way to
price contingent claims. We noted then the occurrence of the martingale measure Q
in this formula. And we stated that this Q-dependence wasn’t a coincidence - there
was something deeper going on. The theory of the intermediate chapters has now
put us into a position to justify this statement. Indeed, the two most important
results presented in this chapter are Theorem 22, and Theorem 23 on the relationship
between Q and arbitrage-free and complete markets.

We shall restrict attention to market models which are, in fact, It6 processes.
We’d like to point out, however, that more general semimartingale market models
are currently being researched. General semimartingale market models include those
with discontinuities such as the jump diffusion described in Section 7.1.4.

Modify the market model we’ve used throughout to now include d > 1 risky

assets. Thus our stock market now contains a single riskless asset B; and d risky
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assets (St(l), St(2), Ce St(d)). The bond B; is assumed to follow the ODE

dB
d—tt = TtBt, BO =1.

In contrast to the discrete time case, where we adjusted our portfolio only at the
'ticks’ of the clock, in this model we shall assume that the portfolio is rebalanced
continuously. The rebalancing may only take into account the information about the
stock price S; up to the current time ¢, for this reason we choose to work with an Ito

process representation

Sy = pdt +> o Paw?, s = s,

j=1

where p; and oy satisfy the appropriate conditions on integrands and
W= (Wt = WO, WP, . W > 0)

is an m-dimensional Brownian motion. For example S; could follow the stochastic

differential equation dS; = uSydt + 0S;dW, as suggested by Black & Scholes (1973).

We shall frequently refer to the discounted stock price process defined as S = (S =
B, 'St > 0).

8.1 Martingales and Arbitrage

Recall that Q is the probability measure chosen such that the discounted stock price
process S is a martingale. Also recall that the risk-neutral valuation formula provides
a convenient means with which to price any contingent claim. If C' is any claim which

follows the risk neutral valuation formula then
B, 'Cy =Eq (B;'Cr|R), 0<t<T.

Actually, by virtue of Exercise 6.3.1, this means that the discounted process C, =
B;'C, is also a Q-martingale. Furthermore, according to the following theorem, the

claim C' may be replicated by a portfolio containing the underlying stocks and bonds.
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Theorem 21 (Martingale representation theorem). Suppose that M is an F;-
martingale with volatility oy > 0. If N is any other F;-martingale, then there exists
a previsible ¢ such that fOT d?02dt < oo and

t
N, = No+ / 65dM,.
0

Furthermore ¢ is unique apart from scalar multiples.

Essentially the martingale representation theorem says that if there is a measure Q
and filtration F; under which M; is a martingale, then any other martingale (w.r.t.
the same measure and filtration) can be expressed in terms of M;. It implies that if C
and S are both @martingales, then there must be a process ¢ such that dC, = ¢,dS,
for all ¢. Thus C is (theoretically!) replicated by holding ¢; units of stocks and
Y, = B (C, — ¢,S;) bonds for all t < T.

Now suppose the existence of a claim V' whose value at time ¢, doesn’t necessarily

satisfy the risk-neutral valuation formula. That is to say, there is a time ¢ < T when
Vi # BiEg (BEIVT| Fi) -

In other words, we are assuming existence of a commodity, able to be traded within
the market, whose discounted process B; 'V, is not a martingale under the same
measure Q which makes the discounted stock price process S a martingale. We can

define a new process U with value following
U, = BEqg (By'Vr| ).

By the martingale representation theorem, U may be constructed in terms of stocks
and bonds, and therefore it must also be a tradable asset. Thus we have two com-
modities U and V whose values agree at expiry, but at times ¢ < T we possibly
have U; # V;. If there is to be no arbitrage in the market, then this is an impossibil-
ity. This contradiction gives rise to the following result.

Theorem 22. If there exists a martingale measure Q for the discounted stock price

process S, then the market has no arbitrage.

!see Chapter 4 for an overview of the issues involved in hedging in continuous time
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Perhaps Theorem 22 is at a level of abstraction too far removed from reality. It

would be useful to know what it means in terms of the parameters p; = (,ugl), u?), e ,uﬁd))t

and oy = o451 =1,...,d;j=1,...,m]. According to Girsanov’s Theorem (Theo-
rem 15), the m-dimensional process Wt = fot uy,ds + W; will be a Brownian motion

under Q defined implicitly as

dQ t 1/t
= = - W, — = . 1
p - &P < /0 usdW, 2/0 u,ds (8.1)

Thus finding a Q under which S is a martingale is the same as finding a u such that
fori=1,...,d

asf = d(Bs),
_ g (ugﬂ s 30 ag%gﬁ) bt B S o),
j=1 j=1
is driftless. Therefore, to check that the market is arbitrage-free we could check that
there exists an m-dimensional u; such that
Mt — TtSt = 0U;. (82)

Example 32. Consider a market model with B, = 1,Vt, and which contains two

risky assets driven by 2-dimensional Brownian motion Wy = (Wt(l), Wt(2)>

dSY = pdt + odw Y,
ds? = vdt+ pdw®.

This model is arbitrage-free if there is a solution to

()= 0)

which there obviously 1is.
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Example 33. Consider a market model with dB; = r Bydt, r > 0, and three risky
assets driven by a 2-dimenstonal Brownian motion

dst = 2dt +aw Y,

ds® = dt+2aw?,

ds® = dt+aw ) — 2aw?,

This system is arbitrage-free if there is a solution to

2 StV 1 0 W

u
1|-r]|s?] =0 2 ( EQ)) 5
1 S® 1 —g) \"

which there is since St(?’) = St(l) — S§2).

Example 34. Consider a market model with By = 1,Vt, and two risky assets driven

again by 2-dimensional Brownian motion
dst 2 1 -2
= dt + dW;.
(ds§2) 1 ~1 2 !
1 -2\ (u") (2
-1 2/ \«?) 1

has no solutions. So the market may have an arbitrage opportunity. Indeed the value
process of the portfolio ¢ = (w, ¢§1), ¢E2)) s given by

t t t
Vi = Vot / B, + / ¢yds;") + / 84S,
0 0 0

t t t
= Vo [ 2600+ o0+ [ o0 - oDaw + [ 292 — 290w
0 0 0

The system

If we choose ¢§1) = (/552) =k, then
Vi = Vo + 3kt.

Thus, choosing 1 such that Vo = 0, the portfolio ¢ is would make wealth out of
nothing.
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8.2 Martingales and complete markets

Not only are martingales and instances of arbitrage very much connected, but we can
also decide if a given market is complete by examining the martingale measure Q. A
market is complete if every contingent claim is attainable in the sense that it can be
replicated by a self-financing trading strategy consisting of the underlying securities.
Complete markets were briefly mentioned in Section 2.1.

Mathematically we can describe a complete market as follows. Let

¢t = (%; ¢§1), «52)’ LR gd))

represent a portfolio. That is to say ¢ = (¢y;¢ > 0) is a trading strategy which, at
time ¢, involves holding v, bonds and d)ﬁ” units of stock ¢ (1 = 1,...,d). At this time
the value of the portfolio is simply

d
Vi=veBi+ > oS (8.3)
=1

A strategy is self-financing if no money is brought in or taken away from the portfo-
lio after it has been set up. In other words, the gains and losses the portfolio makes are
solely due to gains and losses on the underlying investments (Bt, St(l), St(Q), cen St(d)>.
If the portfolio is only rebalanced at discrete time points ¢t and ¢ 4 h, and there is no

infusion or withdrawal of funds, then

d
Vien = Ve= 4 (Buan = B) + 3 6 (S, - ) .

i=1
In continuous-time the analogous condition is
d .
dV, = 1dB, + Y ¢{"dS,. (8.4)
i=1

Note that this condition is different from the expression which would be obtained
for dV; if we applied It6’s formula to (8.3).
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A market is complete if we can find a replicating portfolio ¢, satisfying (8.4), for
every (European) contingent claim. If Cr is the payoff function, then we require

T
Cr = V0+/ av;,
0

T d T '
— Vo4 / YidB; + Y / oVds®. (8.5)
0 = Jo

Completeness is a stronger condition than the non-existence of arbitrage, as such
we’d expect stricter requirements to be satisfied. Theorem 22 stated that the existence
of a martingale measure Q (or equivalently existence of a vector process u satisfy-
ing (8.2)) is sufficient to ensure the market is arbitrage-free. Market completeness

requires that the measure Q (and hence u) to be unique.

Theorem 23. The market is complete if and only if there is a unique martingale

measure Q for the discounted stock price process.

There is a 1 : 1 correspondence between Q and u (according to relation (8.1)),
and so Q will be unique if and only if u is the unique solution in R™ to (8.2). It
follows that the necessary and sufficient requirement for a market to be complete is
that rank(o;) = m almost always.

Why does a unique martingale measure imply market completeness? Assume Q
exists and is unique, in this case u must be uniquely defined by (8.2), therefore
rank(o;) = m. The market is complete if a process ¢ can be found satisfying (8.4)
and (8.5). Discounting Equation (8.5) by a factor of B! and applying the change of
variables S, = B;1S,, W, = fot u,ds + W,, we have

T d N
B7'Cr =V, +/ By ¢odw,.
0 i=1

But by the martingale representation theorem (Theorem 21), we must be able to find
a unique 0, = (ef), 052), e Ht(m)) such that

T
BrlCr = Cy +/ B;16,dw,,
0
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thus Cy = Vj and
/ BN 6o Paw, / Ze Jaw .
7j=1 1

Since each component Wt(j ) of W, wanders independently, the only way that this can

d

=

occur is if
d . .. .
Y oo =00, vt>0,j=1,...,m. (8.6)

By assumption o; is of rank m which means ¢; is uniquely defined by this system.
Since C' was arbitrary, any claim may be replicated in this way. Moreover we have
the freedom to choose v = (¢4;t > t) such that the self-financing condition (8.4) is
satisfied.

Why is a unique martingale measure required for market completeness? We shall
argue that unless rank(o;) = m not every possible claim C will be attainable. This

is easy to see since attainability requires that the system (8.6), namely
oy =0, Vi >0,

can be solved (for ¢). Thus 6; must be part of the linear span of the rows of o;. And

since # could correspond to any claim, this linear span must be all of R™.
Example 35. Consider a market model with B; = 1,Vt, and three risky assets
dst = 2dt +dw Y,

ds® = dt+2dw®,
ds® = dt+dwM — 2aw?,

Then r = 0 and Equation (8.2) gets the form

)

2 1 0
uf?

1 = 0 2 (2) ,
Uy

1 1 -2

which has the unique solution (u(l), u(Q)) = (2 l). Therefore the market is complete.
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Example 36. Consider a market model with By = 1,Vt, and three risky assets driven

by 3-dimensional Brownian motion (m = 3).

ds{ = dt+aw,
ds? = 2dt+dw® +dw”,
ds® = 3dt+dw ) + dw® + aw®.

For this model (8.2) translates as

1 0 0\ [u®
21l =101 1 u® |,
111 u®

which has a solution space (e.g. u = (1,1,1)") but since o is only of rank 2, there is
no unique solution. The model is arbitrage-free but not complete.

Indeed the Fp-measurable claim with payoff Cr = Wg) cannot be replicated by a
portfolio containing quantities of Sgl), 5,5(2), S§3), and B;. To see why, let’s seek such
a replicating portfolio.

We are looking for a ¢ = <¢t, ¢§”, ¢§2), ,@) such that

t t
Bf'w = Br'Vo+ / B o aw) + / B o (aw? + aw?)
t
- / B; ¢ (th‘” +dw, ) + dW§3>) ,
0
t t
= BV [ B (o) 4 o) aw [ B (o7 4 )
0

0
t
+ [ B (64 07) awl®.
0

By the martingale representation theorem, there is a unique 6, = (Ht(l), 09, Ht(3)) such
that

T T T
B2 =Gy + / B oM aw + / B0 aw + / B o aw®,
0 0 0
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and by inspection § = (0,1,0). The portfolio we are seeking must therefore satisfy
e o,
©d — 1,
Ve =0

It is easy to see that no such ¢ exists.

8.3 Option pricing

If a given stock market model is recognisable as part of the semimartingale class, then
solutions to economic problems such as option pricing and portfolio optimisation can
be built on very solid platforms.

The following result summarises some of the discussion of the previous two sec-
tions.

Corollary 24. Let S; = (Bt, St(l), ceny S,gd)) be a complete market. Suppose u satis-

fies (8.2), define Q by (8.1), and suppose W to be Q-Brownian motion. Let Cp be
the payoff function of a European style claim, then the time t (t < T) price of the

claim s given by
Cy = BiEq (B7'Cr|F) .

Moreover, the replicating portfolio ¢; = (wt, §”, cee, ¢§“”) 18 the unique solution to

d
S o = 69, j=1,....m,
=1
d . .
Yy = B/ (ct—zqﬁﬁ“st‘”),
=1

where 0 satisfies

T
B7lCr =G, +/ B 0,dW;.
0
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Actually, this result may fail if certain technical conditions aren’t satisfied (see QPksendal
(1998) theorems 12.3.2 and 12.3.4).

Example 37 (The Black & Scholes model). Suppose the market has just two se-
curities, a bond dB; = rBydt and a risky stock dS; = uSidt + 0,5, dW (0y > 0),
where Wy is 1-dimensional Brownian motion. For this model Equation (8.2) reads

e St — 1Sy = 04 Sy,

which has a solution u; = o} (y — 7).
Using Corollary 24 we can price any FEuropean claim with payoff Cr via the for-
mula

C, = BiEq (B;'Cr), (8.7)

where Q s given by

d@ _ T (/1'8 - Ts) 1 T (:U's B 7'8)2
d—]P = exp <—/0 TdWs — 5/0 Tds .

Example 38 (Black & Scholes price for a European call option). Assumer,
u, and o are all constant. Substituting B7'Cp = (B3'Sr — Br'K)™ into (8.7) yields
Black-Scholes formula

CO = Soé(dl) — KC_TTQ(dQ),

1 So 1
= — |1 - _ 2T
where d; Gﬁ[og(K)-i-(T-i-?a) ],
1 So 1

wd dy = 1 fog(2) 4 Looa].

8.4 Exercises

1LIfC, = B, 'C, and S, = B, 'S, are both Q-martingales, and ¢ is a process
chosen such that dC; = ¢,dS, for all t. Show that C is replicated by holding ¢
units of stocks and 1, = B;"' (C; — ¢,S;) bonds for all ¢t < T..
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2. If dS, = pedt + 7, 0 dW, dB, = rBdt, and W) = [/ uids+ W, show
that

d (Bt_lst) = Bt_l (Mt — TS — Zat(j)uij)> dt + Bt_l Z Uéj)th(j)-

j=1 j=1

3. In each of the following,

e determine whether or not arbitrage opportunities exist (assume B, = 1, Vt).

If so, find one;

e determine if the markets are complete. If not, find a claim which is not

attainable.
(a)
dsi” = 3dt+dw +aw?,
ds? = —dt+dw —aw?.
(b)
sy = dt+aw ) +aw® —aw?,
ds® = sdt — dW +dw? +aw®.
(c)
ds{” = dt +dw" +aw,
ds® = 2dt + dw) — aw ),
ds® = 3dt — dw) +aw®,
(d)

dSV = dt +dw) +aw,?,
ds? = 2dt +dw) — aw?,
ds®? = —2dt —dw +aw?,
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4. If
T d T . .
Cr =V +/ YidB; + Z/ sVds;”,
0 = Jo
show that

T a
B;'Cr =V, +/ B 60w,
i=1

0
where S, = B;'S,, W, = fot usds + Wy, and u satisfies p; — .Sy = ouy.

5. Evaluate (8.7) for the case described in Example 38.



