Questions for quantum chaos section.

October 22, 2007

Q4 What is the BGS conjecture 7 In less than one page explain what is has to say about the
quantum description of systems that are classically chaotic. {10 marks)

In 1984, Bohigas, Giannoni and Schmidt (BGS) made the conjecture that:

“statistical properties of long sequences of energy levels of generic quantum sys-
tems whose classical counterparts are chaotic have their pattern in long sequences
of eigenvalues of large random Hermitian matrices with independent, identically
disgtributed entries,”

The conjecture refers to the level spacing distribution, P(s). This is the probability that the
energy level spacing between a randomly chosen level and the next lies between s and s + ds.
To facilitate comparisons between different systems, the Hamiltonian is scaled to ensure that
the average level spacing is unity. For integrable systems the spacing distribution is Poisson
distribution. This corresponds to the spectra of fully integrable systems. In such systems the
hamiltonian is completely diagonalised and each eigenvalue makes up a symmetry class of its
own, It is thus reasonable to agsume the eigenvalues are completely uncorrelated. Let the
probability to find an eigenvalue between E and £+ dF be a constant which we take as unity
after rescaling the average energy eigenvlaue spacing. Let us now calculate the probability,
p(s), that from a given eigenvalue, we will find only one other a distance s away, with no other
eigenvalues between, If we divide up the interval of length s into N equally spaced intervals,
the probability is easily calculated as

p(s)ds =N Iinoo (1 - %)Nds (1)

In the limit this is p(s) = e™*. We note that this s peaked at zero spacing indicating that
levels tend to come in bunches,

We can classify hermitian matrices into classes according to how they transform under differ-
ent classes of unitary transformations. If the Hamiltonian is not time reversal invariant (eg
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Q5

it contains a magnetic field), then the most we can require is that the hermiticity property is
preserved. The ensemble of such random matrices is then called the random unitary ensemble.
This defines the Gaussian Unitary ensemble (GUE),

If the Hamiltonian is invariant under time reversal and does not contain spin half interactions,
it can always be chosen as real. This property is preserved under orthogonal transformations.

H =0H0T 007 =1 (2)

In that case we must restrict the class of unitary transformations to be simply orthogonal
matrices, and we will refer to the ensemble of random matrices with this property as an
orthogonal ensemble. This defines the Gaussian orthogonal ensemble (GOE)

In systems with tline reversal invariance and with spin interactions Hamiltonians are even
dimensional and transform into each other under the symplectic transformation:

H = SHSR (3)
where S is a sympletic matrix which means it must satisfy S5 = 1 with
St = 78T 71 (4)

where

Lo = t10amoy (5)
This defines the Gaussian Symplectic ensemble (GSE).
The eigenvalue spacing distributions for the GUE and the GSE as well as the GOE.

Zsexp (—%s) (GOE)

p(s) = fzsz exp (—25?) (GUE) (6)
526%84 exp (—5s?) (GSE)

Note the dependence at small spacing. The GOE ig linear, the GUE is quadratic and the
GSE is quartic.

Consider a system with integrable (regular) classical dynamics. Suppose the corresponding
quantum system is described by an N dimensional Hilbert space. Assume that the dynamics
of this system is woll described by a suitable random matrix ensemble and order the energy
levels so that ¢; < €2... < ey, Let p.(\) be the probability of obtaining an energy level
spacing of X for the r**-nearest neighbour spacing (that is to say the energy level spacing
€n+r — € = A for arbitrary n) . Show that for systems with a regular dynamics this is given
by
XrHl Y
pr(\) = oDl

agsuming we have scaled the energy to give an average level spacing of unity. (10 marks)

The energy levels for integrable systems are statistically independent and follow a Poisson
distribution. This means that the probablity per dX to find a level at the end of the interval
[A, A+dA) is constant, which we take to be y. At the end we will let v = 1 to have unit average



spacing. Define a particular sample for  levels on the interval [0,A) to be {A1,Ag, ..., A}
The probability for this sample is

PriAL A2 Ag, vy M) = @Yy e A1)y oGy AL dy

We now need to average over all samples on the interval [0, \)
A Ar A2
pT()\) = (f)/)"“Hl f d)\r dXp_1 .. / d)\le_'Y()\“)\r)e“'?’(/\r—)\r~1) . e“’)()\l
0 0 0

We now do the X -ordered integrals integrals one after the other to get

(7)\)%—1 e—ﬁ/)\

() = (r— 1)

Finally we set v == 1 to ensure the average nearest neighbour spacing' is unity.

Q6 Consider a quantum system described by a Hilbert space of dimension N. Let |o) be an
arbitrary initial state. The survival probability, Py, (t), is defined as the probability that the
system will still be found in its initial state, ¢}, after a time ¢ > 0. If we average over all
initial states and over a suitable random matrix ensemble it is possible to write the average
survival probability as

— 2 N-1

(t) = vl t N_I_lfoooPN(}\)cos()\t)d)\

where PN ()\) is the probability that an energy level spacing of A occurs between any pair of
energy levels.

(a) Show that, in general,

5 N1
PN()) = NN=T) D N =rp(N)
r=1

where p,.(A) is the probability of obtaining an energy level spacing of A for the r**-nearest
neighbour spacing (2 marks)

If there are » levels in a list, then there are
¢ N —1 nearest neighbour spacings of width A, which occurs with probability py(\)

® (N — 2) next-nearest neighbour spacings of width A with probability pa())
* ..,

e N — 7 r th nearest-neighbur spacings of width A with probability p,(A).

'There are N(N-1)/2 elements in this list and each is equally likely, Thus the total
probability for any pair of levels to have separation A is

o 5 N1
(A) = NN-D > (N = r)pe(N)
=1



(b) Prove that, for a system with regular dynamics the average survival probability, :‘5@,
never drops below its long time limit of 2/(/N + 1), while for chaotic systems it may drop
below the long time limit for some time.

(8 marks)

We first note that as ¢ — oo, the oscillatory part oscillates more and more rapidly and
thus we expect that this integral will average to zero. So the long time limit is just
2/(N +1).



3. Survival Probability Function for Autonomous Hamiltonians

Given that PN(A) is well behaved, which is to be expected as it is a
probability distribution, it can be seen that as t increases the cosine function
oscillates more and more rapidly with A, and hence the integral approaches
zero. For any well behaved PN(A), the long time limit of the survival

probability function averaged over initial conditions and an ensemble of
hamiltonians is ‘

2
((_P(w))) = (3.32)

To observe the behaviour of the survival probability function relative to
this limit, we must examine the integral ' '

PY(t)= ]:PN (AYycos(At)dA - (3.33)
0

which is a fourier transform of PN(A). Clearly, if PN(t) is greater than
- zero, then the survival probability function is greater than its long time limit,

while if it drops below zero, the survival probability function is less than its
long time limit.

For the case of a classically regular system, it has been previously noted
that the statistics of the energy levels are poissonian, and hence we can write
the rth nearest neighbour distributions as

r—t
A ] hexp[-An/(AE)] (3.34)

P "mz[m) (ABYG—1)1

where (AE) is the mean energy level separation.
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3. Survival Probability Function for Autonosnous Hamiltondans
ﬁsing this value to determine PN(A), one can show that

2N
d’pP 2(7»)2 0 dp” (M Mo for A>0 (3.35)

Hence dPN(A)/d) is non-decreasing, but always remains negative.
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Figure 3.1 Qualitative plot of dPY(A)/dA

Integrating PN(t) by parts, we obtain ' i

PV ()= [P"ms‘“(“)] [N (3:36)
0

t
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3. Survival Probability Function for Autonomaous Hamiltonlans

where the first term is zero as sin(0)=0 and the probability distribution
approaches zero as A becomes large. We can write the second term as an
infinite sum of integrals A, with limits 2n-1)r/t and 2nw/t.

2

% N . % N 3
PP QysnM) o, f LGP SAD

PY(t)=
0 dvo ..t 2n-1ymy dh ¢
= A (t)rk . A, (B
- Z A (3.37)
n=l
Fach of the integrals A (t) can be subdivided into two terms
(2n-l)1% N . 9% / N . ‘
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Figure 3.2 Qualitative Plot of (Dsin(At)/t, -dPN()/d\ and (3) the multiplication of (1) and
~ (2). The required comparison between compared regions can be clearly seen via the size of

the areas.
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3. Survival Probability Function for Autonomous Hamiltonians

Now -dPN(L)/dA is always positive, and sin(At)/t is always positive for
the first term, and always negative for the second, so the first term will be
positive, and the second negative for all values of n. Further, as -dPN(A)/dA is
non-increasing, the magnitude of the first term must be greater than or equal
to the magnitude of the second, and thus each of the A, values must be
greater than or equal to zero, for all values of t. |

The PN(t) value must similarly be greater than or equal to zero, hence the
survival probability function averaged over initial conditions and an
ensemble of hamiltoniians must be greater than its long time limit for all times
t for a system that is regular in its classical limit.

3.5 Classically Chaotic System

As was established in section 2.3.4, systems which in their classical limit
act chaotically are characterised by level repulsion. This is evidenced by the
fact that the energy level spacing distribution has a minimum for zero energy
spacings. It is also obvious that each of the rth nearest neighbour spacing
distributions for r=2, must have a minimum at zero, as such an event
occurring would require an energy level degeneracy of (r+1) energy levels,
which is less likely than a degeneracy with only two energy levels. As PNQA)
is simply the sum of a positive coefficient multiplied by the rth nearest
neighbour spacing distributions (see equation 3.24), and each of the rth
nearest neighbour spacing distributions must have a minimum at zero energy
Jevel spacing, it can be seen that PN(A) must similarly have a minimum at zero
energy level spacing. We can then write

I 20 suchthat PY(0)<PY(L) (3.39)

Noting that PN(t) is the fourier transform of PN(A), and obviously then
that PN(\) is the reverse fourier transform of PN(t),

PY(0y—PY (W) == dr P¥ (1)cos(01) —%Td: PY ()cos(At)
0

ajre ajwe

dt PV (1)1 cos(Ar)] (3.40)

]
|
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3. Survival Probability Function for Autonomous Hamiltonians

Given PN(D=0 for all t=0, it can be seen that for all A#0 the above
integral must be greater than or equal to zero, as the second factor in the

integrand is always non-negative. So

vaz0 PV <PY) (3.4

Clearly there is a contradiction between statements 3.39 and 3.41, and
hence our initial assumption that PN(t)=0 is incorrect. We can write

3¢t suchthat PY()<0 (3.42)

The second part of the proposition, that for a classically chaotic system
the survival probability function averaged over initial conditions and an
ensemble of hamiltonians drops below its long time limit is hence proved.




