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Chapter 1

Quantum theory.

1.1 The quantum principles.

No useful description of the physical world can be given that does not account
for chance and randomness. The quantum theory indicates that the universe is
irreducibly random. If we are to exploit the quantum world to build a winning
technology we need to understand the odds that nature is dealing us. Random-
ness is not a unique feature of the quantum world. All around us we see examples
of apparently unpredictable and random behaviour. To appreciate what is special
about the kind of randomness present at the quantum level we need to consider
for a moment ordinary, everyday randomness.

No experiment is completely reproducible. In each trial, the results fluctuate
a little. There is an ’experimental error’, a small unpredictable variation in the
results of the experiment caused by our inability to fully control the situation.
Today when we introduce our students to the scientific method we devote a great
deal of time to teaching them to correctly account for errors in their results. No
one should accept an empirical result unless it is accompanied by some ‘margin
of error’.

Despite the unavoidable noise and error in any real measurement there is an
instinctual belief that, were enough known about a physical system, the result of
any measurement could be predicted with certainty. The triumph of physical sci-
ence from the sixteenth century to the start of the twentieth century has certainly
enforced a faith in the inherent predictability of the world. The primary source
of this faith rests on the revelations of Newton’s mechanics. Newton showed
that precise mathematical relationships could be discovered behind the perplex-
ing multiplicity of everyday phenomenon, from the fall of an apple to celestial
motions. The scientific legacy of Newton is Newtonian mechanics, a clockwork
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6 CHAPTER 1. QUANTUM THEORY.

universe in which all matter followed a predetermined course, slowly unfolding
a primordial configuration.

At the close of the nineteenth century, however, some disturbing hints began
to emerge that this faith might be misplaced. The great French mathematician
Henri Poincaré was the first to glimpse the jungle beyond the apparent simplicity
of Newtonian mechanics. Poincaré was studying the motion of three objects un-
dergoing mutual gravitational attractions, using powerful new geometrical tools
which he had developed. He soon realised that the paths of motion must be
exceedingly complex and twisted, with an infinite number of folding and stretch-
ing.

We now know that what Poincaré saw was but the tip of an iceberg. In all but
the simplest and most exceptional systems, predictability is severely limited by
the presence of chaos. If a system is chaotic, small errors in the initial conditions
are amplified very rapidly, leading to apparently random behaviour, unrelated in
any simple way to what we imagined were the starting points of the motion. But
that is another story.

At about the time Poincaré was puzzling over the unimaginably complex mo-
tion of three gravitating objects, the first harbingers of a far more radical crisis
for Newtonian mechanics had begun to appear. Hot objects emit energy as elec-
tromagnetic radiation. How hot they are determines the colour, or frequency, of
the emitted radiation. The objective was to determine how changing the temper-
ature changed the energy given off, and as a corollary, the frequencies emitted.
The problem was the usual one; theory and experiment did not agree. This was
know as ‘the black-body problem’.

The two great triumphs of 19th century physics, electromagnetism and ther-
modynamics,were continuum theories; theories that regarded nature as continu-
ous and not particulate. So strong was this belief, that doubts were even raised
about the validity of atoms as the ultimate building blocks of the world. If pressed,
I suspect a physicist of the time might have acknowledged that, at the bottom, all
was atoms moving according to Newton’s laws. However such a description
might have been regarded as an unnecessary extravagance. Planck adopted a
more cautious attitude to the atomic hypothesis. In 1895 he wrote[?];

I do not intend, at this point, to enter the arena [on behalf of] the mech-
anistic view of nature; for that purpose, one has to carry out far reach-
ing and, to some extent, very difficult investigations.

It was left to Ludwig Boltzmann to attempt just these very difficult investiga-
tions by taking a radical step; Boltzmann supplemented mechanics with statis-
tics, and in so doing laid the grounds for Planck’s bold solution to the black body
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problem and the beginning of the end for Newtonian physics. Boltzmann’s at-
tempt to found thermodynamics on mechanics, supplemented with statistics and
probability, generated enormous opposition. That Boltzmann had recourse to
the atomic hypothesis was bad enough, but to introduce statistical reasoning into
mechanics, the most exact of sciences, was an anathema to many of his contempo-
raries. In the ensuing controversy Planck took the side of Boltzmann, if somewhat
ambivalently.

On Sunday 7th October, the experimentalist Heinrich Rubens visited Planck
at his home and told him of the latest results on black body radiation. Planck
immediately sat down to incorporate these results into his thinking about the
problem, with the result that he was able to write down a new formula. That same
evening he communicated his result to Rubens on a postcard. Two days later
Rubens returned to Planck. His formula agreed perfectly with the experimental
observations.

Planck had the correct formula to describe black body radiation. Unfortu-
nately he could not justify it on purely theoretical grounds. It did not take him
long to find the crucial step needed to get the right result. To take that step Planck
returned to Boltzmann’s work, and made a decisive commitment to Boltzmann’s
probabilistic reasoning. If he used Boltzmann’s statistical formulation of thermo-
dynamics, he found he could derive the black body formula by making only one
additional assumption; the energy of an oscillating particle is restricted to be an
integer multiple of its frequency of oscillation times a new fundamental constant,
now called Planck’s constant. Planck had solved the problem of black body radi-
ation.

Planck’s bold hypothesis explained the experimental results, but the hypothe-
sis itself remained unexplained. There is nothing in the physics of Newton which
would require the motion of an oscillating particle to be restricted to certain en-
ergies.

We can imagine a very simple kind of oscillating particle as follows. Suppose
we have a particle constrained to move only in a straight line, without friction,
between two reflecting walls (see figure 1.1).

Between the walls, Newton’s laws tell us that the particle will continue to
move, in the same direction and at constant speed. When it hits the wall it expe-
riences a force which reverses its motion. (To keep things simple we will assume
that it loses no energy at each reflection). The particle can have any speed at all.
However if Planck’s hypothesis is correct, this cannot be true. If we restrict it
to have only particular energies, it cannot move at an arbitrary speed. It is as if
there were some strange road rule to the effect that, on the quantum highway,
you can travel at 20 km/hour or 40km/hour or 60km/hour ... but never at any
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Figure 1.1:

other speed !
Twenty years would pass after Planck’s address in Berlin, before a complete

quantum theory, totally supplanting Newtonian mechanics, would arise to ex-
plain his hypothesis. The basic idea behind the quantum theory of an oscillating
particle is simple enough, and I will explain it later in this chapter. The explana-
tion turns on a new way to calculate the ‘odds’ for measurement results, a new
probability calculus; a calculus so strange and unfamiliar that even today it gen-
erates heated debate among physicists (and others) as to exactly what it means.
To get to this point however we need to reflect a little on how ordinary odds are
calculated.

1.2 From classical to quantum probability.

Two-up has been described as Australia’s very own way to part a fool and his
money. As the name implies it is a game of chance played by throwing two coins.
Two coins (pennies) are thrown into the air from a small wooden palette by the
spinner, selected from the assembled crowd. The spinner aims to toss a pair of
heads three times, before tossing a pair of tails or five consecutive odds (a tail
and a head). If this is done the spinner is paid at 7:5, otherwise the bet is lost.
Onlookers may place side bets, but here I will only discuss the game from the
point of the spinner.

In one spin there are four possible outcomes, two heads (HH), two tails (TT),
a head and a tail(HT) or a tail and a head (TH). How do we get from these simple
facts to a calculation of the odds of a spinner tossing five consecutive odds? In
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order to answer this question we need to know how to assign probabilities, or
odds, to the elementary events which describe the outcome of each spin. Once we
have these we then need to know how to combine these elementary events to get
the odds for more complex events. The mathematical theory of probability arose
precisely to answer such questions about games of chance, but has long since
shrugged off its dubious genesis to become a respected branch of mathematics.
Most people find probabilistic reasoning rather difficult, which is just as well for
the continued viability of casinos and lotteries. Fortunately we only need a couple
of simple results to understand two-up.

Games of chance are probably as old as humanity, but a mathematical the-
ory of randomness did not arise until the Renaissance. It is rather puzzling that
ancient Greek mathematics, which attained excellence in many areas, had little
or nothing to contribute to the mathematics of chance. Perhaps studying games
of chance was considered to be ‘poor taste’ in the intellectual circles of Aristotle
or Archimedes. But more likely such questions didn’t interest thinkers obsessed
with geometry. A true mathematics of probability did not really get going un-
til about 1660. About that time Antoine Gombault de Méré, a gifted nobleman
with a penchant for gambling, asked his friend, the young Pascal, the following
question. If two die are thrown, how many tosses are needed to have at least an
even chance to get a double six ? Pascal’s answer is recorded in a letter he wrote
to another great mathematician, Fermat, and represent the birth of mathemati-
cal probability in the western science. By the way, the answer to the Chevalier’s
question is 24 throws for a probability of 0.491 and 25 throws for a probability of
0.505.

Pascal’s answer was arrived at through a novel counting argument supple-
mented with one essential assumption; each result, in a single roll of a dice is
‘equally probable’. This came to be known as Laplace’s rule of insufficient rea-
son. Given this assumption, the rest is arithmetic. To see how it works let us
look at the simpler case of a toss of two coins. Four results (TT, HH, TH, HT) are
possible. If each is equally probable we ‘assign’ the probability of one quarter to
each. Now we can calculate the probability for say an ‘odd’, that is a TH. Of the
four possible outcomes this represents half of them, so the probability is one half.
In other words we add the fundamental probabilities for each way an odd result
can occur. Given the initial assignment of probabilities, the rules of arithmetic
can be applied in an almost mechanical way to answer any number of questions,
but is the original assignment reasonable ?

When we ask this question we are going straight to the heart of what is so
puzzling about probability. The assignment of the fundamental probabilities is
based on our belief in what constitutes a fair dice or coin. Of course we can check
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how reasonable this belief is by taking a particular coin and throwing it many
times. If it always came down heads, we would soon begin to loose confidence
in our original assignment of probability. As more knowledge becomes available
we need to re-assign the fundamental probabilities. It seems that assigning prob-
abilities is a curious mixture of belief and practice, of subjective and objective. It
is this duality that makes probabilistic reasoning so difficult and gives philoso-
phers endless cause for debate. It is especially disturbing then when probabilistic
reasoning turns out to be useful in physics, which is supposed to be the objective
science par excellence.

In some cases the rule of insufficient reason is itself rather insufficient. Com-
mon everyday usage of the word ‘probability’ seems to require more general
rules. In some cities in Australia, the whether bureau adds to its daily forecast
a statement of the ’probability of rain’. Just what does a 20% probability of rain
actually mean and how is this number arrived at ? It is far from clear how the rule
of insufficient reason could be applied here. What are the equally likely alterna-
tives ? In some cases there are just too many alternatives. For example suppose
you randomly select a number on the real line. What is the probability that the
number selected is a rational number? There are an infinite number of rational
numbers, but then there are infinitely many more non-rational numbers. In this
case the probability of getting a rational number is zero, which does not mean it
is impossible. Then there are special events. For example what is the probabil-
ity that life will arise in a universe just like ours ? Presumably this is 100%, but
this doesn’t quite answer the question. What we are really asking for is just how
unlikely is life on earth. Was it a certainty or was it a one-in-a-million chance ?
Assigning probabilities is a far from straightforward matter.

Despite these misgivings the rule of insufficient reason does seem quite rea-
sonable, at least for games of chance, and we can always check it against ex-
perience. Once the basic probabilities are assigned, the rest follows from arith-
metic. Until the early years of the 20th century the probability calculus initiated
by Pascal, was the only game in town. After awhile it begins to look as if it is
the only possible way to calculate with probabilities. What a surprise then when
experiments on matter at atomic scales suggested a new probability calculus —
quantum mechanics.

In quantum mechanics the probabilities of elementary events are determined
in an entirely new way, using a new set of numbers, complex numbers, unknown
to Laplace or Pascal. As a result, some of the most obvious rules of classical
probability theory do not apply under certain circumstances. One such rule is
the sum rule used to calculate the probability for an odds in a two-up game.
Knowing how such a simple rule can fail takes us to the heart of the quantum
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theory.

Laplace’s rule can be used when we have no idea what to expect for a given
outcome. But in physics we know a lot about what to expect for a given ar-
rangement of matter. If we know enough about the set up of a two-up game,
for example we know the mass and shape of the pennies, their exact speed and
orientation as they leave the skip, the effect of gravity and of the passing breeze,
we might just be able to predict the outcome and clean up. On the other hand,
even with the fastest super computer, we might die before we had finished the
calculation for just one toss. In every experiment an exact description is impossi-
ble in practice and even unnecessary. If we want to get anywhere we include just
the essential information and treat every thing else as a source of randomness or
noise. However we can always console ourselves by continuing to think that a
completely predictable description can be given.

In quantum theory however this classical ideal is forever abandoned. It is
now known that at the atomic level nature is irreducibly random. Even if the
entire experimental arrangement is completely specified, we cannot predict with
certainty the results for all possible measurements we might care to make on the
system. This is a deeply disturbing fact. The goal of physics has always been
to provide explanations for observations. But quantum physics teaches us that
this goal can be approached but not reached. Fortunately the theory does at least
tell us how to calculate the probabilities for a particular observation even if in a
particular run of the experiment we cannot predict with certainty what the result
will be. We cannot avoid talking about probabilities if we are to describe the
universe as it is.

Quantum theory is expressed in terms of probabilities for outcomes to mea-
surements. That is not surprising. As we have seen, to get a realistic and practical
description of the physical world we must put up with a certain amount of ran-
domness. However, the rules for reckoning quantum odds are nothing like the
obvious rules used in two-up. Quantum two-up is the fairest game in the land. I
am going to describe a quantum two-up game played with light, but to begin we
need to pause and ask; what is light? The answer to this question at the end of
the 19th century, and the one you are likely to get today if you ask a high school
physics student, is: light is a wave. This is not correct. Five years after Planck
introduced the quantum hypothesis to explain observations on black body radi-
ation, another exotic quantum bloom appeared in the garden. On 9 June 1905,
a paper appeared in Annalen der Physik with the title, ‘On a Heuristic point of
view about the Creation and Conversion of Light’. The author was Albert Ein-
stein. In a letter to a colleague he described the contents of this paper as ‘very
revolutionary’. A considerable understatement.
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Consider for a moment the matter of air pollution monitoring. A standard
method to monitor emissions of these substances is to continually sample a small
amount of the gas going up a factory chimney. When oxides of nitrogen react
with ozone, they emit light. By using the remarkable property of certain metals
to develop a charge when exposed to light, the little bursts of light produced
may be detected electrically. The explanation of this property was the subject of
Einstein’s paper.

If we take a metal plate and expose it to light it will acquire a positive charge.
The explanation had been worked out six years before Einstein’s paper of 1905.
The light causes negatively charged electrons to be ejected from the surface. If
the plate is electrically neutral to begin, losing a few electrons leaves it with an
unbalanced positive charge. This seems straightforward enough until you exam-
ine things a little more closely. If you carefully control the wavelength of the light
falling on the metal you find that above a certain wavelength, the light has no
effect. The plate remains neutral. If you set up a little experiment to measure
the speed of the ejected electrons you discover a very odd result. The maximum
speed of ejected electrons, if any are ejected at all, does not depend on the inten-
sity of the light. Increasing the intensity only increases the number of electrons
ejected per second.

Both of these facts are inconsistent with the notion that light is a wave. Imag-
ine a boat tied to a mooring, rocking up and down as waves pass by. If the height,
or intensity, of the wave is big enough, the boat may break free of its moorings. If
light were a wave, increasing its intensity should eventually supply sufficient en-
ergy to wrest the most tightly moored electron free of metal atoms in the surface.
Yet that is not what happens. If the wavelength is not right, the electrons will
remain bound to the surface of the metal, no matter how intense the light. Yet
clearly, if the light supplies sufficient energy, the electrons must eventually break
free. If increasing the frequency of the light causes the electrons to be emitted
then there must be some relationship between the energy carried by light and its
frequency. That was Einstein’s insight ( and the one that gained him the Nobel
prize). He postulated that the energy carried by light was proportional to its fre-
quency, and that the constant of proportionality was exactly the same constant
that Planck used in his theory of black body radiators. Furthermore, according
to Einstein’s explanation, the best way to picture what is going on is to regard
light as made up of little particles, photons, each with energy proportional to the
frequency of the light. In this way we see why increasing the intensity increases
the number of electrons ejected. For each photon of the right energy one electron
can be ejected. Increasing the intensity increases the number of photons and thus
increases the number of electrons emitted.
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Thus began the quantum theory of light, which was not to achieve a full ex-
pression until the middle of the 20th century, long after a quantum theory of
matter was accepted. (Why ? Light moves so fast that any theory of light must
take into account the theory of relativity. A relativistic quantum theory was not
so easy to come by). We don’t usually need the quantum theory to describe light.
But if we use light of very low intensity a quantum description is necessary. To
describe light of different intensity, we use light of differing numbers of photons.
To describe light of different colours we use photons of different energies. Before
Einstein, all experiments with light were adequately explained by picturing light
as a wave. Einstein used a particle picture to describe the observed effect of light
on matter. So is light a particle ? No it is not. Neither is it a wave. However if
we are to communicate with each other we must use familiar concepts, such as
particle or wave, to describe the outcome of observation. So long as we only use
our picture in the context of the observation we are trying to describe we won’t
get into trouble. That at least was the interpretation given to quantum theory by
the Danish physicist Neils Bohr. It was an interpretation that was never accepted
by Einstein. He continued to believe that it was possible to say just what light
really was, without some intellectual tight-rope act in which properties depend
on the act of observation.

To make a quantum two-up game with light we will use a device called a
beam splitter. This is essentially a half-silvered mirror; half the light goes through
and half gets reflected. What happens if we use light of such low intensity that
it has only one photon ? When the photon encounters the beam splitter it can
either be reflected or transmitted, see figure 1.2. In the figure we have two laser

Figure 1.2:

sources labeled D (for downward directed) and U (for upward directed). For
now we will assume that we only use the D source, so that all photons directed
towards the beam splitter are traveling in the downward direction. If this photon
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is transmitted it is still traveling downward and will be counted by the photon
detector placed in the the path of this beam. We call this the D-detector. On the
other hand, if a photon reflected it is now heading in an upward direction and
will be detected by the photon counter placed in the path of the upward traveling
photons, which we call the U-detector. If we repeat the experiment many times
(many tosses of the coin) we see that roughly equal numbers are counted at either
detector. If we insist on a physical picture to explain this we would say that any
given photon is equally likely to be transmitted or reflected. The behaviour of
any given photon is as random as a coin toss. Even if we know everything there
is to know about the light we use, its intensity, colour, polarisation, we cannot
predict whether any individual photon will be reflected or transmitted. The best
we can do is give the odds (even in this case). This looks like a simple coin-toss.

However the situation is a bit more complicated. Suppose we ’toss’ the photon
again, see figure 1.3. After the first beam splitter we use two perfectly reflecting

Figure 1.3:

mirrors, one in the downward path and one in the upward path to direct the
photon back onto another, identical, beam splitter. The photon counters are now
moved back to monitor the beams after the second beam splitter. What is the
probability to detect a photon at, say, the upper detector, P(U)?

If the photon at a beam splitter really is a coin toss, we can argue like this.
There are four possible histories for a photon: it can be reflected at the first beam-
splitter and the second beam-splitter (RR), or it can be transmitted at both, (TT),
or it be reflected at the first and transmitted at the second, (RT) or vice-versa
(TR). Each case is equally likely, so we assign a probability of 1/4 to each history,
P(RR) = P(TT) = P(RT) = P(TR). Detection at U can be achieved in two ways:
RR and TT. Following the Bayes’ rule the probability for detection at U is then

P(U) = P(RR) + P(TT) =
1

4
+

1

4
=

1

2
(1.1)

When the experiment is done, the results are completely different: the photon
is always detected at U. Detection at U is certain, so that P(U) = 1. See figure
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1.4. In this experiment we see how quantum systems can exhibit both irreducible

Figure 1.4:

uncertainty and certainty depending on how we interrogate the system. This is
one of the keys features of quantum states. To help you remember them I will
give them each a name.

The quantum principles:

• BOHR: Given complete knowledge of the state of a physical system, there

is at least one measurement for which the results are completely random.

• HEISENBERG: Given complete knowledge of the state of a physical sys-

tem, there is at least one measurement for which the results are completely
certain.

The first of these represents a complete departure from the ideal of classical me-
chanics. In classical mechanics to have complete knowledge of a physical system
means that we can predict the results of every measurement we may care to make
upon it. The first principle suggests that, at heart, the world is a coin toss. Despite
this it is nonetheless intelligible as the second principle makes clear.

How do we describe the experiment with beam splitters in the quantum for-
malism? The key feature of quantum mechanics is a new way to compute prob-
abilities for experimental results. Probabilities are not the primary object, rather
we first need to assign a probability amplitude. This is a number that is not neces-
sarily positive (indeed it does not even need to be real, but we will not need that
complication in this course). Given the probability amplitude for an event, the
resulting probability is found by squaring the amplitude, which of course always
yields a positive number.

Quantum theory has two distinct components. The first component is a calcu-
lus for dealing with probability amplitudes and turning them into probabilities.
The second component tells us how to assign the probability amplitudes in the
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first place. In the second component we find a number of mathematical tools,
such as the Schrodinger equation, that tells us how to assign probability ampli-
tudes given the physical description of a system. For the rest of this chapter we
will assume the amplitudes are given and learn how to use them to compute the
probability for measurement outcomes.

Perhaps one of the most surprising features of the quantum description is the
following. Once we have a list of the probability amplitudes for the outcomes of
the measurement of a particular physical quantity, we can compute the probability
amplitudes for the outcomes of the measurement for every physical quantity. It is
for this reason that we call the list of probability amplitudes the quantum state of
a physical system.

We can now firm up what the quantum principles mean. To have complete
knowledge of a quantum state means to have a complete list of all the probabil-
ity amplitudes that describe the results of measurement of a particular physical
quantity. If all the amplitudes have the same magnitude, for this particular mea-
surement, the resulting probabilities will all be equal and for this measurement
the results are totally random. Note, it follows the the sum of the squares of the
probability amplitudes in the list must be unity.

However if this list really is complete, then the quantum formalism gives a
way to transform this list of probability amplitudes to get the probability ampli-
tudes for the measurement results of every other physical quantity. In particular
there is a physical measurement for which the transformed list is made up of only
one non zero element. For this physical quantity, only one result will be obtained
and that will be obtained with certainty.

To see the calculus in action let us see how it works for the single photon with
beam splitters. The first rule we need is the quantum version of Bayes’ rule. To
help you remember it, I will call it Feynman’s rule.

Feynman’s rule:

if an event can happen in two (or more) indistinguishable ways, first
add the probability amplitudes, then square to get the probability.

In the case of the beam splitter experiment, there are only two possible measure-
ment results: either the photon is counted at the U-detector or it is counted at the
D-detector. The quantum state is then a list with just two elements, (t, r), such
that P(D) = t2 and P(U) = r2. Obviously we need to have r2

+ t2
= 1. We can if

we like refer to r as the probability amplitude for a photon to be reflected at the
beam splitter and t is the probability amplitude for the photon to be transmitted.

We have explicitly introduced a particular notation for a quantum state as an
ordered pair of probability amplitudes. We have chosen the order such that the
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first entry represents the amplitude for a photon to be counted in the D-direction
and the second entry corresponds to a photon being counted in the U-direction.

Using the notation of the previous paragraph, a single photon input in the
D-direction can be described by the quantum state (1, 0). The beam splitter then
transforms the state according to (1, 0) → (t, r). In a self consistent way we could
then describe the state of a photon input in the U direction as (0, 1). It might
seem at first sight that such a photon is transformed as (0, 1) → (r, t). There is
a problem with this in the case of a 50/50 beam splitter, which highlights an
important physical principle which we pause to consider.

In classical physics a beam splitter is an optical device described by Maxwell’s
equations. These equations describe the interaction of light and matter in a way
which is completely reversible in time; no entropy can be generated in a sys-
tem which is time reversal invariant. Put another way, no information can be
lost. Among other things this implies that physically distinguishable input states
cannot be transformed to the same output states. If that were to happen the in-
formation, on what distinguished the states originally, would be lost.

In the example we are considering, the two input states (0, 1) and (1, 0) are
physically distinct but as it stands they are mapped to the same quantum state
for a 50/50 beam splitter. The way to fix this is to note that we can get physical
access only to the probability of transmission and reflection, which are equal to
t2 and r2. We can however change the sign of one of the components of the list
of amplitudes without changing this. So we adopt the following transformation
rule for beam splitters in general:

(1, 0) → (t, r) (1.2)

(0, 1) → (−r, t) (1.3)

A simple graphical representation can be used to keep track of where the minus
sign should go, illustrated in figure 1.5 for a 50/50 beam splitter. We regard the
ordered pair of probability amplitudes as a vector in a two dimensional space,
with the horizontal component corresponding to the first entry (the D-direction
amplitude) and the vertical component corresponding to the second entry (the
U-directed entry). The general case is illustrated in figure 1.6

In the experiment indicated in figure 1.4, a photon must interact with two
beam splitters, for example, to be reflected at the first and transmitted at the sec-
ond beam splitter, and we need a new rule. In the case of a double coin toss,
the probability to get a head AND a tail, P(HT) is calculated by multiplying the
probability for each event P(HT) = P(H) × P(T). The same rule applies for the
quantum world but at the level of probability amplitudes. For example the list of
probability amplitude for the histories RR,TT,TR, RT is (r1r2, t1t2, t1r2, r1t2).
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QM2: Introduction to quantum mechanics.
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Figure 1.5: A graphical representation for how quantum states, considered as
lists of probability amplitudes, are transformed by a beam splitter in the case of a
50/50 beam splitter.

The probability to detect a photon in the U-detector can now be calculated
using Feynman’s rule. This event can occur in two ways, either RR or TT, so the
probability is

P(U) = (r1r2 + t1t2)2 (1.4)

Using the results in figure 1.5 we see that

P(U) =

(

1√
2

1√
2

+
1√
2

1√
2

)2

= 1 (1.5)

In a similar way,

P(D) = (r1t2 + t1(−r2))2 (1.6)

which for a 50/50 beam splitter gives, P(D) = 0.
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Figure 1.6: A graphical representation for how quantum states, considered as lists
of probability amplitudes, are transformed by a beam splitter in the general case.

1.3 Quantum mechanics for free particles.

A free particle is one that is not acted on by a force. It can only have kinetic
energy. In one dimension Newtonian physics gives the position as a function of
time as

x(t) = x0 + p0t/m (1.7)

where x0, p0 are initial position and momentum.
In this case the possible outcome for a measurement of position is a point on

the real line. The possible results are not only infinite but non denumerable. In
the absence of any knowledge at all, such a particle could be found anywhere at
all if the position is measured. How are we to fit a measurement such as this into
the scheme of specifying a quantum state as a list of probability amplitudes for
the outcomes of a measurement? If there are infinitely many possible outcomes,
the list will need to be infinitely long!

And that is exactly how it is done. In a deeper treatment of quantum me-
chanics we need to be able to work with infinite lists. However for our purposes
we will ignore this complication. For most situations of practical concern the
probability distribution for position generally falls off outside of some region of
interest, say the laboratory, and we can focus on tis region. we will assign a single
probability amplitude for each position, x. In general this is a complex number
but at the level of this course we won’t use complex numbers. Instead we will use
another graphical trick. Traditionally the probability to find a particle at point x
is denoted as ψ(x).
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The probability amplitude to find a particle in an infinitesimal region around
position x is represented by a vector in a two dimensional space, figure 1.7. The
length squared of the vector gives the probability for that position to be found
upon measurement. It is important to remember that this vector does not “live”
in real space but in an abstract space of probability amplitudes. The angle that the
vector makes with the horizontal direction depends upon x. We will arbitrarily
assign this angle to be π/2 for x = 0. We can do this as only changes in the angle
as x is varied has a physical significance. So, how does this angle change with
position?

The answer to this question was discovered by Schrödinger. In order to ex-
plain what it is, we need to revise some basic kinematics. You are probably quite
familiar with kinematic concepts such as momentum, kinetic energy and angular
momentum. You may be less familiar with action.

The action of a mechanical system is a rather special quantity that lies at the
heart of the more sophisticated formulations of dynamics given by Lagrange and
also by Hamiltonian. The action of a particle at point x which has momentum
p at that point is I(x, p) = xp. As a particle moves the action will change. We
usually solve Newton’s equations of motion to give the position and momentum
as a function of time. However we can eliminate the time variable to specify the
motion by giving the momentum as a function of position, p(x). If we plot p(x)
versus x we get a curve that we will call an orbit. There is a remarkable fact about
Newtonian mechanics: the particle will move such that the total action over the
orbit is a minimum. This implies that if we were to plot p(x) as a function of x, the
area under the curve from the initial position to a final position is a minimum.
This area is the total action of the orbit.

We can now state Schrödinger’s rule: the change in the angle of the probability

amplitude vector as we change the position from the initial position xi to the final
position x f , is proportional to the change in the action along that orbit.

As an example consider a free particle. In this case the momentum, p = p0 is
conserved and cannot change. Let us put the initial position at the origin, xi = 0.
The change in action of an orbit to an arbitrary position, x is then just, p0x. The
angle of the probability amplitude is, by Schrödinger’s rule is then

θ = π/2−
(

2π

h

)

p0x (1.8)

where we have used the assignment of an angle of π/2 for x = 0. The constant of
proportionality is 2π/h where the constant h is new fundamental constant called
Planck’s constant and in SI units has the value

6.067× 10−34Js (1.9)
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which has units of action (which, by the way, are the same as the units of angular
momentum).

θ=π/2 θ

θ

x=0x= -a x=a
real space

ψ( −a) = 1 ψ( 0) = 1 ψ( a) = 1

Figure 1.7: A representation of the probability amplitude for the outcome of a
position measurement of a free particle with fixed momentum. The probabil-
ity is given by the length squared of the arrow. The only way in which the ar-
row changes for different position outcomes is via a rotation: the length does not
change. The rotation angle is given by Schrödinger’s rule, Eq.(1.8)

In this example of constant momentum, the length of the vector has no depen-
dance on position at all. This means that we are equally likely to find the particle
at any position. In other words the position of the particle is very uncertain. As
we discussed earlier, this must be an approximation. In reality the probability
must eventually fall off for very large position measurements. Nonetheless the
position uncertainty is going to be very large. This is a reflection of a very impor-
tant principle, the Heisenberg uncertainty principle. If we specify a quantum state
with a very well defined momentum, the position uncertainty will be very large,
and conversely. If designate the uncertainty in position as ∆x and the uncertainty
in momentum, the Heisenberg principle says that there for all physical states we
must have

∆x∆p ≥ h/4π (1.10)

In figure 1.8 we illustrate this for the example of figure 1.7
Let us look at an example with an uncertain momentum: a free particle with

a definite energy. A free particle has only kinetic energy which is given by

E =
p2

2m
(1.11)

If E is fixed the magnitude of the momentum is fixed but not the sign. In other
words a particle can have the same kinetic energy but could be either moving to
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p=0 p=p

P(p)

0

momentum distribution

x=0x= -a x=a

P(x)
position distribution

Figure 1.8: The momentum and position distributions for the state in figure 1.7
The momentum is definite and correspondingly the position is totally indefinite.

the left or moving to the right. The momentum is thus uncertain by an amount

that scales as
√

E.
This is a situation where we can apply Feynman’s rule, as a state of definite en-

ergy can be found at a position x with two values of momentum, ±
√

2mE, which
are indistinguishable if we only observe position. The graphical representation
of this state must have two arrows each representing the particle being found at x
with one or the other momentum.

As before, we will set the angle for both vectors to be π/2 for a particle to be
found at x = 0. For results that are x 6= 0, the probability amplitude vectors rotate
in opposite directions as the momenta have opposite sign. Some examples are de-
picted in figure 1.9. Applying Feynman’s rule we need to add the two probability
amplitudes, which is this case has to be vector addition. For x = 0 the two vec-
tors are in the same direction and thus give a vector of twice the length of each.
On the other hand there are some position measurement results for which the
amplitude vectors point in opposite directions and cancel each other completely.
The probability is zero and we will never find a particle at this position. A little
geometry shows that the probability for position measurements will be given by

P(x) ∝ cos2(2πpx/h) (1.12)

We do not put in the constant of proportionality here as we have chosen the
lengths of the amplitude arrows to be arbitrarily set at unity. This is a reflection of
the unphysical nature of such states in so far as the particle could be found at ar-
bitrarily large distances. In such a situation we can really only look at the relative
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x=0x= -a x=a

Probability

amplitude 

space

real space

ψ( −a) = 0 ψ( a) = 0ψ( 0) = 1

Figure 1.9: A representation of the probability amplitude for the outcome of a
position measurement of a free particle with fixed energy. A definite value of
energy can be realised in two indistinguishable ways corresponding to equal and
opposite momentum. Thus at each position there are two probability amplitudes
that need to be added first.

variation of probability with position, but the distributions cannot be normalised.
In figure 1.10 we plot the position and momentum distribution for a free particle
state of definite energy.

p=0

P(p)

p=p
0

momentum distribution

x=0x= -a x=a

P(x)
position distribution

p  =    2mE
0

p=-p
0

Figure 1.10: The momentum and position distribution for a free particle with a
state of definite energy.
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1.4 Quantum mechanics for oscillators.

We now consider the quantum description for dynamics of particles executing
oscillatory motion in a confining potential. The most natural example is the sim-
ple harmonic oscillator; a single particle moving in a quadratic potential. This
example was precisely the one that Planck considered when he ushered in his
revolutionary proposal: the energy of oscillating systems are restricted.

The position, as a function of time, of a particle in a quadratic potential is

x(t) = x0 cos(2πt/T) (1.13)

where T is the period of the motion. The momentum is

p(t) = −2πmx0

T
sin(2πt/T) (1.14)

The total energy of the particle is

E =
p(t)2

2m
+

2mπ2

T2
x(t)2 (1.15)

which is independent of time, and in fact determined by the initial position as

E =
2mπ2

T2
x2

0 (1.16)

In this case one easily sees that the action of the orbit is simply the area of the
ellipse in phase space defined by the curve in Eq.(1.15). This is shown in figure
1.11 One easily sees that the area is simply given by the product of the energy
and the period as ET where the period, T, is the inverse of the frequency, f , and
given by

T =
1

f
= 2π

√

m

k
(1.17)

Planck’s rule now says that only those orbits are allowed for which the action
is an integer multiple of Planck’s constant. Thus we see that the allowed energies
are given by

En = nh f (1.18)

As another example we consider a not-so-simple oscillator: a particle bounc-
ing elastically between two walls a distance L apart, see figure 1.12 The period of
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Figure 1.11: The phase space orbit for a simple harmonic oscillator with energy E

L

Figure 1.12: The square-well oscillator. Between the walls the energy is entirely
kinetic, E = p2/2m

motion obviously depends on energy, as the faster the particle moves the shorter
time it takes to go from one side to the other. The period is in fact given by

T(E) =
2mL

p
= L

√

2m

E
(1.19)

The phase-space orbit is a rectangle, see figure 1.13 The area is given by 2L
√

2mE
and applying Planck’s rule to the area gives the allowed energies as

En =
n2h2

8mL2
(1.20)

Planck’s rule is a direct application of Schrödinger’s rule and the way we sum
probability amplitudes. The square-well oscillator is very much like the example
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x

p

p  =    2mE
0

L/2-L/2

p  =    2mE
0

-

Figure 1.13: The phase-space orbit of the square-well oscillator square-well oscil-
lator with kinetic energy, E = p2/2m

of a free particle with fixed energy except that the probability to find the particle
outside the box is zero. This means that we must set P(x = L/2) = P(=−L/2) = 0.
If you look back to the free-particle example you will see that this will necessarily
restrict the momentum and thus the energy. For a free particle we saw that the
position probability density was given by P(x) ∝ cos2(2πpx/h). But if we set this
to zero at x = ±L/2 we see that the smallest momentum we can have consistent
with this result is

pmin =
h

2L
(1.21)

so that the minimum energy allowed is

Emin =
h2

8mL2
(1.22)

which is the same result as that given by Planck’s rule in Eq.(1.20).
This last result is curious when we compare it to what we would expect clas-

sically. In Newtonian mechanics of such a system the lowest energy is obviously
zero for a particle that is not moving at all. In the quantum case, if we restrict the
position of the particle it must have a minimum energy different from zero. This
is in fact a reflection of the uncertainty principle as we now show.

The average energy for a particle in a square well is simply kinetic and given
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by

E =
〈p2〉
2m

(1.23)

However the average of the momentum squared is related to the variance in mo-
mentum by

〈p2〉 = ∆p2
+ 〈p〉2 (1.24)

However for a symmetric system such as this, a state of definite energy is a su-
perposition of positive and negative momenta thus we expect the average mo-
mentum to be zero; 〈p〉 = 0. We thus have that

E =
〈∆p2〉

2m
(1.25)

However by the uncertainty principle we must have

∆p2 ≥ h2

16π2∆x2
(1.26)

We can crudely estimate that for a square-well, ∆x = L, and thus we expect that

E ≥ h2

32mπ2L2
(1.27)


