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1
Review of quantum mechanics.

1.1 Classical mechanics.

Classical and quantum mechanics begin by defining elementary notions
of state and physical quantity. However very different mathematical ob-
jects are assigned to these concepts in the two theories. We will begin
with the more familiar notions of classical mechanics in the Hamiltonian
formulation.

1.1.1 States, physical quantities, instruments and operations

Definition.
A classical state, P (q1, q2, . . . , qn, p1, p2, . . . , pn) is positive, real val-
ued, integrable function ( with norm one in L1 ) on an even dimen-
sional sympletic manifold, the phase space.

The normalisation is
∫ ∞

−∞
dqndpnP (qi, pi) = 1 (1.1)

Technical note: States are elements of the positive cone, V + of the Banach
space L1, where

V + = {x ∈ L1 : x is a positive function} (1.2)

A symplectic manifold is a manifold endowed with a particular differ-
ential two-form,

γ = dpi ∧ dqi (1.3)

(there is a sum over the repeated index). Here dq, dp are differential one
forms Let f, g be two real valued functions on phase space. Real valued
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1.1 Classical mechanics. 5

functions define flow vectors by

vf (q, p) =

(

−∂F
∂qi

,
∂F

∂pi

)

(1.4)

The canonical two form is then defined by its action on these vectors,

γ[vf ,vg] = −{f, g} (1.5)

where {f, g} is the Poisson bracket

{f, g} =

(

∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)

(1.6)

In fact we need to consider a more general class of functions to represent
states which includes delta functions, because of the following definition.

Definition.
A completely specified state is a pure state and is given by

P (q, p|q0, p0) = δ(2n)(q − q0, p− p0) (1.7)

A pure state corresponds to a single point in phase space. A completely
specified state means that we know everything there is to know about
the state. There is no uncertainty in the specification. (Note we have
suppressed the dependence on all the 2n canonical variables and use just
the symbols q, p to denote the full set of coordinates for the sympletic
manifold.

We now turn to the definition of physical quantities.

Definition.
A physical quantity is a real valued function A(q, p) on the symplectic
manifold.

Technical note: physical quantities are the positive elements of L∞, the
dual to the space L1 of states. The Banach space L∞ is the space of
functions f(q, p) on phase space such that |f(q, p)| < ∞. In fact the
space of physical quantities is the positive cone of an Abelian C∗ algebra,
where the involution is complex conjugation∗.

Note that in this case we do mean regular differentiable functions, not
delta functions. Examples are:

• kinetic energy T = p2/(2m)

∗ See for example An invitation to C
∗ algebras, W. Arveson, Graduate texts in Math-

ematics, 39 (Springer, 1976)
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• potential energy V (q)

• total energy (Hamiltonian) H = T + V

• angular momentum ~L = ~q × ~p

Definition.
The moments of a physical quantity A in the state P is given by

〈A〉P =

∫ ∞

−∞

dqdpA(q, p)P (q, p) (1.8)

Technical note: the moment defined by a state P is a bounded positive
linear functional on the space L∞ of physical quantities. We may thus
identify states with positive linear functionals, with unit norm, on the
set of physical quantities. In the theory of C∗ algebras, positive linear
functionals of unit norm are called states. The origin of this designation
should be clear enough.

States in classical mechanics admit an ignorance interpretation. By this
we mean that if a system is in a state P , that is not a pure state, then we
interpret this as reflecting our lack of knowledge of the actual pure state
of the system. (This interpretation is not possible in quantum theory of
physical states). We imagine that, given enough effort, we could resolve
this ignorance by a more careful specification of the system. That is to
say, there is some measurement that will tell us the actual state of the
system as a pure state.

To make this idea a little more precise let us write a general state P (q, p)
as a convolution over pure states

P (q, p) =

∫

dq′dp′P (q − q′, p− p′)δ(q′, p′) (1.9)

In this form it is compelling to interpret the state P (q, p) as resulting
from an average over the a priori pure states, δ(q, p) with respect to the
conditional probability distribution

P (q, p|q′, p′) = P (q − q′, p− p′) (1.10)

which we can say represents our lack of ability to resolve a pure state.
Equation (1.9) suggests a generalisation:

Pobs(q, p) =

∫

dq′dp′P (q, p|q′, p′)P (q′, p′) (1.11)

which we interpret by saying that the a priori state of the system is
P (q, p), however, due to finite resolving power of the instrument ( repre-
sented mathematically by the conditional probability P (q, p|q′, p′)) that
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we use to determine the state, the observed state is Pobs(q, p). With this
interpretation P (q, p|q′, p′) is the conditional probability for the instru-
ment to record the values (q, p) given that the system is in the pure state
δ(q′, p′). It is easy to show that Eq.(1.11) defines a linear operator on
state space, that is, it is a positive linear operator from states to states.

Exercise 1.1 Prove this last statement.

We shall refer to the conditional probability P (q, p|q′, p′) as an instrument
or as an effect.

We are now led to ask a very natural question: if we use the instrument
P (q, p|q′, p′) on the a priori state, P (q, p), what is the state of the system
conditioned on a particular measurement result (q̄, p̄) ? In other words,
what is the a posteori state given a particular outcome? The answer is a
straightforward application of Baye’s theorem:

P ′(q, p|q̄, p̄) =
P (q̄, p̄|q, p)P (q, p)

Pobs(q̄, p̄)
(1.12)

where the prime reminds us that this is the a posteori state. The trans-
formation from a priori state to a posteori state is called an operation.
Note that this is a nonlinear transformation as Pobs(q̄, p̄) depends on the
prior distribution.

Exercise 1.2 Gaussian states are defined by

P (q, p) = (2π|detσ|)−1/2 exp

[

−1

2
(q − q0, p− p0)σ

−1(q − q0, p− p0)
T

]

(1.13)
where

〈(q, p)〉P = (q0, p0) (1.14)

and σ is the covariance matrix. Likewise a Gaussian instrument is defined
by

P (q, p|q′, p′)) = (2π|det∆|)−1/2 exp

[

−1

2
(q − q′, p− p′)∆−1(q − q′, p− p′)T

]

(1.15)
Show that in this case the operation transforms a priori Gaussian states
to a posteori Gaussian states.

1.1.2 Dynamics

There are two pictures to specify the dynamics. We can consider equa-
tions of motion for the physical quantities themselves, with states held
independent of time. This is the Hamilton picture. Alternatively we
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can consider the evolution of states and hold physical quantities fixed in
time. This is the Liouville picture. Both pictures give the same results
for moments of physical quantities as we now show.

In the Hamilton picture, the evolution of physical quantities is given by
Hamilton’s equations,

dA

dt
= −{H,A} +

∂A

∂t
(1.16)

where the last term accounts for an explicit time dependence in the func-
tion A(q, p, t), which typically we will not consider. The { , } is the usual
Poisson bracket.

In the Liouville picture, we seek an evolution equation for the phase
space probability density P (q, p, t), which specifies the state at time t. A
phase space function of the form F (q, p, t) may change in time due to the
implicit dependence of the canonical variables on time and there may be
an explicit time dependence. The total time derivative is then

dF

dt
=

dq

dt

∂F

∂q
+
dp

dt

∂F

∂p
+
∂F

∂t
(1.17)

= {F,H} +
∂F

∂t
(1.18)

We can think of the dynamics of the density P (q, p, t) like the flow of
a fluid. Imagine that the density describes an ensemble of particles at
different points in phase space, all moving according to Hamilton’s equa-
tions. The total derivative is then the rate of change of the density with
time as we follow the flow. The partial derivative however is evaluated
at fixed q, p, and corresponds to sitting at a particular point in the phase
plane and monitoring the density. The functions q(t), p(t) which specify
the canonical coordinates as time changes are generated by Hamilton’s
equations and thus constitute canonical transformations. Such transfor-
mations do not change phase space volume. This means that P (q, p)
behaves like a density for an incompressible fluid flow on phase space.
This implies that the total derivative dP

dt = 0. We thus find that

∂P

∂t
= {H,P} (1.19)

This is Liouville’s equation and it describes the dynamics in the Liouville
picture.

Exercise 1.3 Show that the evolution of moments of physical quantities
are the same in both pictures.

An important point to note here is that the Liouville equation is a
linear partial differential equation with only first order derivatives. This
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has the important consequence that two nearby states will remain nearby
under evolution, regardless of whether or not the dynamics is regular or
chaotic. There are a number of ways to see this. A interesting path was
first given by Koopman† in the early part of last century.

To be more specific we need to sate precisely what we mean by ‘nearby’.
We will use a statistical notion of nearby that arises in classical mathe-
matical statistics. In what sense can two probability distributions P1 and
P2 be considered close to each other ? We cannot measure a probability,
we can only measure q, p and thus sample the distribution. In a long
run of experiments on identically prepared systems we can then try and
estimate the probability distribution based on the relative frequency of
observations. If two distributions are very close it may not be possible
for sampling of this kind to distinguish them. In mathematical statistics
considerations such as this led to the development of a notion of statistical
distance. We can specify this either as an infinitesimal distance ds2 or as
a global metric, d(P1, P2). A infinitesimal metric may be consistent with
more than a single global metric. The infinitesimal distance is defined
by considering a parametric family of states Pθ(q, p) and then ask for the
statistical distance between Pθ and Pθ+dθ. This is given in terms of the
Fisher information, Fθ,

ds2 = 〈
(

∂ lnP

∂θ

)2

〉dθ2

=

∫

dqdpPθ(q, p)

(

∂ ln(Pθ(q, p))

∂θ

)2

= Fθdθ
2

Or we can use the Kullback information which, while not a metric, does
give a measure of statistical distinguishability,

L(P1, P2) =

∫ ∞

−∞
P1(x) log

(

P1(x)

P2(x)

)

dx (1.20)

Exercise 1.4 Show that the statistical distance does not change in time
under Hamiltonian evolution.
Show that the Kullback information of two states does not change under
Hamiltonian evolution.

In classical mechanics the state of a single particle in three dimensions
is given by a probability distribution on a six dimensional real manifold,
with a sympletic structure (ie a Poisson bracket), called the phase space.
Three coordinates give the position of the particle and three give the

† See Asher Peres, , Quantum Theory, (Kluwer, 1995)
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momenta. The dimension of the phase space for two such particles is
simply the Cartesian product of the two phase spaces for each particle,
which has twelve dimensions. In the case of k particles the phase space
is of dimension 6k, that is, it increases linearly with the number of sub
systems.

1.2 Quantum Mechanics.

In quantum mechanics we also define physical states, physical quantities
and dynamics, but the mathematical structure assigned to the definitions
is very different from classical mechanics.

Definition.
The state of a physical system is specified by a positive trace class
operator, ρ, of trace one acting on Hilbert space L2. The operator ρ
is called the density operator.

Definition.
The physical quantities are given by self adjoint operators, A, on the
Hilbert space.

Definition.
The moments of physical quantities are given by

〈A〉 = tr(Aρ) (1.21)

We now pause to note some curious differences between quantum and
classical mechanics. First we note that there is as yet no reference to a
phase space at all. This immediately raises the question of how quantum
and classical mechanics can be compared at all. Second we note that it is
not at all clear how to connect the quantum notion of a state with what is
actually done in a real experiment. Typically an experiment is specified
by a preparation procedure which may involve setting various devices,
cooling the system, turning on and off interactions between component
systems etc., and a measurement procedure in which various outcomes
are recorded. Both preparation and registration procedures can be spec-
ified by strings of numbers, possibly coded in binary form. An analysis
of the experiment then compares the strings specifying the preparation
procedure to those specifying the measurement results, and interesting
correlations reported. As it stands however we have made no mention
of how quantum mechanics describes the results of a particular experi-
ment. The hint on how to do this is contained in the definition of physical
moments, 〈A〉 = tr(Aρ).
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The self adjoint operator A on Hilbert space may be written in terms
of its spectral decomposition

A =
∑

a

a|a〉〈a| (1.22)

for operators with a discrete spectrum and

A =

∫

dµ(a)a|a〉〈a| (1.23)

for some measure dµ(a), for operators with a continuous spectrum.‡ The
average of the physical quantity represented by A may now be written as

〈A〉 = tr(Aρ)

= tr
(

∑

a|a〉〈a|ρ
)

=
∑

a tr(|a〉〈a|ρ)

=
∑

aP (a)

where
P (a) = tr(|a〉〈a|ρ) (1.24)

As ρ and |a〉〈a| are both positive operators, bounded by unity under a
trace norm it is not difficult to see that 0 < P (a) ≤ 1 and thus it is
possible to interpret P (a) as a probability§ . In that case Eq.(1.24) is
clearly in the form of a standard statistical average over measurement
results. We can thus interpret the eigenvalues of A as the possible results
of a measurement of this physical quantity and P (a) = tr(|a〉〈a|ρ) gives
the probability distribution over the measurement results.

The density operator is the most general representation of a quan-
tum state and encodes all of the physical meaningful information about
the preparation of the system. This is in fact the content of Gleason’s
theorem[2] which says that for Hilbert spaces of dimension not less than
3, every probability measure on the set of projection operators can be
written as

P (π = 1) = tr(ρ̂Π̂) (1.25)

where Π̂ is a projection operator on the Hilbert space, π = 0, 1 are the
eigenvalues of the projection operator, and ρ is a positive bounded, trace
class operator of trace one.

‡ We are using Dirac notation here. A more careful treatment can be found texts such
as that of Reed and Simon.....

§ Strictly we need to check a few more properties before we make this leap, but they
all work out OK
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In fact even the restriction to projection operators turns out to be an
unnecessary. The most general way to represent probability distributions
in quantum mechanics is

P (a) = tr (F (a)ρ) (1.26)

where F (a) is a positive operator (ie it has positive eigenvlaues) and
satisfies

∑

a F (a) = 1. We call F (a) a positive operator valued mea-
sure (POVM). Almost any realistic measurement is described in terms
of the POVMs rather than projection operators ( see Milburn and Wise-
man,Quantum Mesaurement and Control, Chap. 1). we shall return to
this point when we consider how a phase space description of a quantum
system can be given.

A general quantum state can give a non zero variance for every physical
quantity. However there are a special class of states for which there is
at least one physical quantity that is certain, that is to say, a physical
quantity for which the outcome of the measurement is certain. Such states
are called pure states.

Definition.
A state for which ρ2 = ρ is a pure state.

Pure states are thus projection operators onto a one dimensional sub-
space of Hilbert space. We write such a state as ρ = |ψ〉〈ψ|. In this case
the probability distributions are given by

P (a) = |〈a|ψ〉|2 (1.27)

We call the complex function 〈a|ψ〉, the probability amplitude for the
measurement result to take the value a. We see that probabilities are
not primary in quantum physics but determined at a deeper level by
probability amplitudes, which are not necessarily positive, not even real.
Every state that is not pure is called mixed. A mixed state can always
be written as a convex combination of pure states,

ρ =
∑

i

pi|ψi〉〈ψi| (1.28)

Thus
P (a) =

∑

i

Pi(a) (1.29)

where Pi(a) = |〈a|ψi〉|2.
Pure states are the quantum analogue of classical states represented

by delta function distributions on phase space. In classical mechanics
a pure state means that all measurement results for physical quantities
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are certain, ie dispersion free. Quantum pure states however are not
like this at all. For a pure quantum state, for which there is at least
one physical quantity that is certain, simultaneously there is always at
least one physical quantity which is completely uncertain. This is the
consequence of Heisenberg uncertainty principle. Quantum states are
irreducibly random; a puzzling but well verified experimental fact. Even
when we know every thing there is to know about a quantum state, there
remain quantities that are totally uncertain.

We now need to consider how quantum mechanics deals with dynamics.
This is given by a simple rule. If a state at time zero has a definite value of
energy, that is an energy eigenstate, |E〉, then at a later time t the state is
just a rotation in Hilbert space e−iEt/~|E〉. For an arbitrary initial state
|ψ(0)〉 we can expand in the eigenstates of energy as

|ψ(0)〉 =
∑

E

cE |E〉 (1.30)

Thus at a later time

|ψ(t) =
∑

E

cEe
−iEt/~|E〉 (1.31)

In differential form,
d|ψ(t)〉
dt

= − i

~
Ĥ|ψ(t)〉 (1.32)

where Ĥ is the energy operator. We postulate that the energy operator
is a function of the position and momentum operators as

Ĥ =
p̂2

2m
+ V (x̂) (1.33)

In the case of probability amplitude for position measurements we find

i~
∂ψ(x, t)

dt
= − ~

2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) (1.34)

In the case of a general quantum state, we find that

dρ(t)

dt
= − i

~
[Ĥ, ρ] (1.35)

which is the quantum analogue of the classical Liouville equation. There
is a quantum analogue of the statistical distance between quantum states.
The proof is not so simple as we need to find a definition that works for
all possible probability distributions that result from positive operator
valued measures. However the conclusion is that an appropriate quantum
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version of the statistical distance is [See Nielsen and Chuang, Quantum
computation and quantum information, CUP, 2000].

d(ρ1, ρ2) = arccosF (ρ1, ρ2) (1.36)

where the fidelity , F (ρ1, ρ2) is given by

F (ρ1, ρ2) = tr

(
√

ρ
1/2
1 ρ2ρ

1/2
1

)

(1.37)

It does not look particularly symmetric...but it is. It is then easy to show
that under Hamiltonian evolution, this quantity is invariant, which is the
quantum analogue of the result for the classical statistical distance.

Exercise
Prove that the Fidelity is invariant under Schrödinger dynamics.

A comment is called for at this point. It is often said that there cannot
be a quantum analogue of chaos because the linearity of the quantum evo-
lution equation enforces the invariance of the statistical distance between
states as a function of time. This is clearly nonsense as the same results
holds for the quantum statistical distance between states. While it is
true that quantum and classical non integrable dynamics are very differ-
ent, the difference has nothing to do with the linearity of the Schrödinger
equation.

1.2.1 Quantum Mechanics and Phase Space

Consider an operator Q̂ having the real line as its spectrum. This could
represent the position of a particle, for example. Because of its continuous
spectrum, the eigenstates |q〉 of Q̂ are not normalizable. That is, it is not
possible to have 〈q|q〉 = 1. The usual convention is to choose the scaling
for the states such that

∫ ∞

−∞
dq|q〉〈q| = 1̂. (1.38)

Squaring the above equation implies that the normalization for these
states is

〈q|q′〉 = δ(q − q′). (1.39)

The quantum state |ψ〉 in the position representation is often represented
as

ψ(q) = 〈q|ψ〉, (1.40)
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and called the wavefunction. The probability density to find the particle
at position q is |ψ(q)|2, and this integrates to unity. The state |ψ〉 is
recovered from the wavefunction as follows:

|ψ〉 =

∫

dq|q〉〈q||ψ〉 =

∫

dq ψ(q)|q〉. (1.41)

Here we are using the convention that the limits of integration are −∞
to ∞ unless otherwise indicated.

If Q̂ does represent the position of a particle, then its momentum is
represented by another operator with the real line as its spectrum, P̂ .
Using ~ = 1, the eigenstates for P̂ are related to those for Q̂ by

〈q|p〉 = (2π)−1/2eipq (1.42)

Here the normalization factor is chosen so that
∫

dp|p〉〈p| = 1̂, 〈p|p′〉 = δ(p − p′). (1.43)

Equation 1.43 is the a key postulate from which the quantum description
of particle mechanics follows. It should be seen as a kinematical postulate
to accompany the dynamical postulate introduced above.

Exercise 1.5 Show these, using the position representation and the result
that

∫

dyeiyx = 2πδ(x).

The momentum representation wavefunction is simply the Fourier trans-
form of the position representation wavefunction:

ψ(p) = 〈p|ψ〉 = (2π)−1/2

∫

dqe−ipqψ(q) (1.44)

This is very different from the classical case where the marginal distribu-
tions, while given by integration over states with respect to q or p , are
other wise unrelated.

From the above it is easy to show that in the position representation, P̂
acts on a wavefunction identically to the differential operator −i ∂

∂q . First,

〈q|P̂ |ψ〉 =

∫

dp

∫

dq′〈q|p〉p〈p|q′〉〈q′|ψ〉 (1.45)

= (2π)−1

∫

dp

∫

dq′peip(q−q′)ψ(q′). (1.46)

Now peip(q−q′) = i ∂
∂q′ e

ip(q−q′), so using integration by parts, and assuming

that ψ(q) vanishes at ±∞ (as required by normalization if it is a well-
behaved function) we obtain

〈q|P̂ |ψ〉 = −i(2π)−1

∫

dp

∫

dq′eip(q−q′) ∂

∂q′
ψ(q′) (1.47)



16 1 Review of quantum mechanics.

= −i ∂
∂q′

ψ(q′). (1.48)

It is now easy to find the commutator between Q̂ and P̂ :

〈q|[Q̂, P̂ ]

∫

dq′ψ(q′)|q′〉 = q(−i) ∂
∂q
ψ(q) − (−i) ∂

∂q
qψ(q) = iψ(q). (1.49)

Since ψ(q) is arbitrary, it follows that

[Q̂, P̂ ] = i. (1.50)

The assumption that ψ(q) is “well-behaved” can be made more precise.
It turns out that we require that all ψ(q) belong to the set L(2)(R). That
is, the integral (technically, the Lebesgue integral) of |ψ′′(q)|2 from −∞
to ∞ must be finite. Although the space L(2)(R) is infinite, is actually
countably infinite. That is, the number of basis states for the Hilbert
space H = L(2)(R) is countable. The continuum in the spectrum of Q̂
does not require a continuum of Hilbert space dimensions. The apparent
continuum of states {|q〉} or {|p〉} does not contradict this: these “states”
are not normalizable and so are not actually in the Hilbert space. They
exist as limits of true states, but the limit lies outside H.

1.2.2 Minimum Uncertainty States

From the above commutation relation it follows that the variances in Q
and P must satisfy

〈

(∆P )2
〉 〈

(∆Q)2
〉

≥ 1/4 (1.51)

(Remember we have set ~ = 1.) The states which saturate this are known
as minimum uncertainty states (MUSs). It can be shown that these are
Gaussian states. By this we mean they are states with a Gaussian wave-
function. They are parametrized by three real numbers. Below, we take
these to be q0, p0 and σ.

The position probability amplitude (i.e. wavefunction) for a MUS takes
the form

ψ(q) = (πσ2)−1/4 exp
[

+ip0(q − q0) − (q − q0)
2/2σ2

]

. (1.52)

Her we have chosen the overall phase factor to give ψ(q) a real maximum
at q = q0. It is then easily verfied that the moments for X are

〈Q〉 = q0 (1.53)

〈(∆Q)2〉 = σ2/2. (1.54)

Note the factor of two in the variance, because ℘(q) = |ψ(q)|2.
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The Fourier transform of a Gaussian is also Gaussian, so in the mo-
mentum representation

ψ(p) = (π/σ2)−1/4 exp
[

−iq0p− (p − p0)
2σ2/2

]

. (1.55)

From this it is easy to show that

〈P̂ 〉 = p0 (1.56)

〈(∆P̂ )2〉 = 1/2σ2 (1.57)

The saturation of the Heisenberg bound (1.51) follows.

1.2.3 The Harmonic Oscillator

So far there is nothing that sets a natural length (or, consequently, mo-
mentum) scale for the system. The simplest dynamics which does so is
that generated by the harmonic oscillator Hamiltonian

Ĥ =
P̂ 2

2m
+
mω2Q̂2

2
. (1.58)

Here m is the mass of the particle, and ω the oscillator frequency. This
Hamiltonian applies to any mode of harmonic oscillation, such as a mode
of a sound wave in a condensed matter system, or a mode of the electro-
magnetic field. In the latter case, Q̂ is proportional to the magnetic field,
and P̂ to the electric field.

Classically the harmonic oscillator has no characteristic length scale,
but quantum mechanically it does, namely

σ =
√

~/mω (1.59)

where we have temporarily restored ~ to make its role apparent. If we
define

â =
1√
2

(

Q̂

σ
+ i

σP̂

~

)

(1.60)

then we can rewrite the Hamiltonian as

H = ~ω(â†â+ ââ†)/2 = ~ω(â†â+
1

2
). (1.61)

Now from the commutation relations of Q̂ and P̂ we can show that

[â, â†] = 1. (1.62)

Also, we can show that the state |ψ0〉 with wavefunction

ψ0(q) = 〈q|ψ0〉 ∝ exp(−q2/2σ2) (1.63)

is an eigenstate of â with eigenvalue 0.
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Exercise 1.6 Show this using the position representation of P̂ as −i~ ∂
∂q .

Thus it is also an eigenstate of the Hamiltonian (1.61), with eigenvalue
~ω/2. Since â†â is obviously a non-negative operator, this is the lowest
eigenvalue of the Hamiltonian. That is, we have shown that the quantum
harmonic oscillator has a ground state that is a minimum uncertainty
state with q0 = p0 = 0 and a characteristic length σ given by Eq. (1.59).

1.2.4 Number States

From the above it is easy to show that the eigenvalues of â†â are the
non-negative integers, as follows. From the commutation relations (1.62)
it follows that (for integer k)

[â†â, (â†)k] = â†[â, (â†)k] = k(â†)k. (1.64)

Exercise 1.7 Show this.
Hint: Start by showing it for k = 1 and k = 2 and then find a proof by
induction.

Then, if we define an unnormalized state |ψn〉 = (â†)n|ψ0〉 we can easily
show that

(â†â)|ψn〉 = (â†â)(â†)n|ψ0〉 =
[

n(â†)n + (â†)n(â†â)
]

|ψ0〉
= n(â†)n|ψ0〉 = n|ψn〉. (1.65)

which establishes the result and identifies the eigenstates.
Thus we have derived the eigenvalues of the harmonic oscillator as

~ω
(

n+ 1
2

)

. The corresponding unnormalized eigenstates are |ψn〉, which
we will denote |n〉 when normalized. If the Hamiltonian (1.58) refers to a
particle, these are states with an integer number of elementary excitations
of the vibration of the particle. They are therefore sometimes called vibron
number states, that is, states with a definite number of vibrons. If the
harmonic oscillation is that of a sound wave, then these states are called
phonon number states. If the oscillator is electromagnetic field, they are
called photon number states. Especially in this last case, the ground state
|0〉 is often called the vacuum state.

Because â† raises the number of excitations by one, with

|n〉 ∝ (â†)n|0〉, (1.66)

it is called the creation operator. Similarly, â lowers it by one, and is
called the annihilation operator. To find the constants of proportionality,
we must require that the number states to be normalized, so that

〈n|m〉 = δnm. (1.67)
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Now since |n〉 is an eigenstate of a†a of eigenvalue n,

〈n|â†â|n〉 = n〈n|n〉 = n. (1.68)

However we also have

〈n|â†â|n〉 = 〈ψ|ψ〉, (1.69)

where |ψ〉 = â|n〉 ∝ |n− 1〉. Therefore the constant of proportionality
must be

|ψ〉 = â|n〉 = eiφ
√
n|n− 1〉 (1.70)

for some phase φ. We choose the convention that φ = 0, so that

â|n〉 =
√
n|n− 1〉. (1.71)

Similarly it can be shown that

â†|n〉 =
√
n+ 1|n+ 1〉 (1.72)

Exercise 1.8 Show this, and show that the above two relations are con-
sistent with |n〉 being an eigenstate of â†â.

Note that â acting on the vacuum state |0〉 produces nothing, a null state.

Exercise 1.9 Show that the normalized number state is |n〉 = (n!)−1/2(â†)n|0〉.

1.2.5 Coherent States

No matter how large n is, a number state |n〉 never approaches the classical
limit of an oscillating particle (or oscillating field amplitude). That is
because for a system in a number state the average value of Q and P is
always zero.

Exercise 1.10 Show this.

For this reason, it is useful to consider a state for which there is a classical
limit, the coherent state. This state is defined as an eigenstate of the
annihilation operator

â|α〉 = α|α〉 (1.73)

where α is a complex number (because â is not an Hermitian operator).
There are no such eigenstates of the creation operator â†.

Exercise 1.11 Show this. Assume that there exists states |β〉 such that
â†|β〉 = β|β〉 and consider the inner product 〈n|(â†)n+1|β〉. Hence show
that the inner product of |β〉 with any number state is zero.
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It is easy to find an expression for |α〉 in terms of the number states as
follows. In general we have

|α〉 =

∞
∑

n=0

cn|n〉. (1.74)

Since â|α〉 = α|α〉 we get

∞
∑

n=0

√
ncn|n− 1〉 =

∞
∑

n=0

αcn|n〉. (1.75)

Equating the coefficients of the number states on both sides we get the
recursion relation

cn+1 =
α√
n+ 1

cn. (1.76)

so that cn = αn√
n!
c0. Choosing c0 real and normalizing the state, we get

|α〉 = exp
(

−|α|2/2
)

∑

n

αn

√
n!
|n〉. (1.77)

The state |α :=0〉 is the same state as the state |n :=0〉. For α finite
the coherent state has a non-zero mean photon number:

〈α|â†â|α〉 = α∗〈α|α〉α = |α|2. (1.78)

The number distribution (the probability for measuring a certain excita-
tion number) for a coherent state is a Poissonian distribution of mean
|α|2:

Pn = |〈n|α〉|2 = e−|α|2
(

|α|2
)n

n!
(1.79)

This distribution has the property that the variance is equal to the mean.
That is,

〈

(â†â)2
〉

−
〈

â†â
〉2

= |α|2 (1.80)

Exercise 1.12 Verify this, either from the distribution (1.79) or directly
from the coherent state using the commutation relations for â and â†.

Setting ~ = 1, it is simple to show that

〈α|Q̂|α〉 =
√

2σRe[α] (1.81)

〈α|P̂ |α〉 = (
√

2/σ)Im[α] (1.82)

〈α|(∆Q̂)2|α〉 = σ2/2 (1.83)

〈α|(∆P̂ )2|α〉 = 1/2σ2 (1.84)

〈α|∆Q̂∆P̂ + ∆P̂∆Q̂|α〉 = 0 (1.85)
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That is, a coherent state is a minimum uncertainty state as defined in
Sec. 1.2.2

Because â is not an Hermitian operator, the coherent states are not
orthogonal. In fact it can be shown that

|〈α|α′〉|2 = exp(−|α− α′|2). (1.86)

If α and α′ are very different (as they would be if they represent two
macroscopically distinct fields) then the two coherent states are very
nearly orthogonal. Another consequence of their nonorthogonality is that
the coherent states form an overcomplete basis. Whereas for number
states we have

∑

n

|n〉〈n| = 1̂, (1.87)

the identity, for coherent states we have
∫

d2α|α〉〈α| = π1̂. (1.88)

Exercise 1.13 Show this using the expansion (1.77). The result n! =
∫∞
0 dxxne−x may be useful.

Unlike number states, coherent states are not eigenstates of the Hamil-
tonian. However, they have the nice property that they remain coherent
states under the harmonic oscillator Hamiltonian

Ĥ = ωâ†â (1.89)

Here we have dropped the 1/2 from the Hamiltonian (1.61) as it has
no physical consequences (at least outside of general relativity). The
amplitude |α| of the states remain the same; only the phase changes at
rate ω (as expected):

exp(−iHt/~)|α〉 = |e−iωtα〉 (1.90)

Exercise 1.14 Show this, using Eq. (1.77).

This form-invariance under the harmonic oscillator evolution is why they
are called coherent states.

1.3 Semiclassical quantum mechanics

Prior to the discovery of quantum mechanics by Schrödinger, Heisen-
berg and others, a version of the quantum theory was constructed by
Bohr, Einstein and Sommerfeld using an ad hoc combination of classical
mechanics of point particles and wave theory. We now know that this
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approach gives a powerful insight into the quantum mechanics of states
which are semiclassical in the sense that the average action for such states
is large compared to Plank’s constant. We now review semiclassical ap-
proaches to quantum mechanics. However it is worth noting the reason
why Einstein and others abandoned the semiclassical approach to develop
a general quantum theory: they could see no way to extend it to describe
classically non integrable systems. It is interesting that quantum chaos
considerations were central to the development of the quantum theory.

Consider a system with one degree of freedom and energy given by

E =
p2

2m
+ V (x) (1.91)

Suppose we know only the energy of this system. Its motion is then
defined by a phase space curve;

p(cl)(x) = p(x;E) = ±
√

2m(E − V (x)) (1.92)

We can specify the state of this system with a classical probability dis-
tribution, W (cl)(x,E). We expect this distribution to be small where the
velocity of the particle is large and large where the velocity of the particle
is small. Thus we propose that

W (cl)(x) =
1

2
N 2 1

p(cl)(x)
(1.93)

This distribution diverges at the turning points, q1, q2 of the classical
motion The normalisation is fixed by

∫ q2

q1

dxW (cl)(x;E) = 1 (1.94)

which gives

1 =
1

2
N 2

∫ q2

q1

dx

p(cl)(x;E)

=
N 2

2m

∫ T/2

0
dt

=
N 2

4m
T

where T is the period of the motion. Thus

N = 2
(m

T

)1/2
(1.95)
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The states of definite energy, in the position representation u(x), are
given in the quantum theory as solutions of

d2u

dx2
+

2m

~2
(E − V (x)) = 0 (1.96)

If the potential was a constant, V0, then the solution would simply be

u(x) = N cos

[

1

~

∫ q2

x
dxp0 − α

]

(1.97)

where p0 =
√

2m(E − V0) and N,α are integration constants. So let us
try the ansatz

u(wave) = cos

[

1

~

∫ q2

x
dxp(x;E) − α

]

(1.98)

which satisfies the equation,

[

u(wave)
]′′

+

{

(p

~

)2
−
(

p′

~

)

tan

[

1

~

∫ q2

x
dxp(x;E) − α

]}

u(wave) = 0

(1.99)
If we could neglect the term in square brackets this begins to look like
the Schrödinger equation. However we also need to satisfy a correspon-
dence principle: we expect that the probability density |u(x)|2 should be
the same as the classical expression W (cl)(x;E) in some limit. However
this ansatz looks noting like the classical distribution. So let us try the
modified ansatz

u(WKB)(x) = u(cl)(x)u(wave)(x) (1.100)

where

u(cl)(x) =
N

√

p(x;E)
(1.101)

where WKB stands for Wentzel, Kramers and Brillouin. This satisfies the
equation

[

u(WKB)(x)
]′′

+

{

(p

~

)2
−
(

1√
p

)′′ √
p

}

u(WKB) = 0 (1.102)

The resulting probability density is

W (WKB) = [u(cl)]2[u(wave)]2 (1.103)

which begins to look a bit more like the classical distribution, apart for the
oscillations. In the limit these oscillations develop a very small wavelength
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and most experiments would find it difficult to resolve such fine scale
structure. We thus are led to an average over these oscillations;

W̄ (WKB) =
N 2

p(x)

1

q1 − q0

∫ q1

q0

dx
1

2

[

1 + cos

(

2

∫ q1

x
dxp(x) − α

)]

≃ 1

2

N 2

p(x)
= W (cl)(x)

The range of validity of the WKB amplitude is

p2 >>
√
p

∣

∣

∣

∣

(

1√
p

)′′∣
∣

∣

∣

~
2 (1.104)

or
~

2

2m

∣

∣

∣

∣

5

16

(V ′(x))2

(E − V (x))3
+

1

4

V ′′(x)
(E − V (x))2

∣

∣

∣

∣

<< 1 (1.105)

The approximation requires slowly varying potentials...no sharp edges.. In
addition the approximation breaks down at the classical turning points,
q0, q1.

We can deal with the apparent divergence at the turning points us-
ing Maslov’s method[1]. To implement this method we write the WKB
amplitude more generally as a complex amplitude,

ψ(x) =
ψ0

√

|p(x)|
exp

(

i

~

∫ q1

x
p(x)dx− iα

)

(1.106)

The essential idea is that although the position amplitude may be a poor
approximation in some places, the momentum amplitude may be better,
and vice versa.

The momentum probability amplitude is given by

ψ̃(p) =
1√
2π~

∫

dx ψ(x) exp(− i

~
xp) (1.107)

=
ψ0√
2π~

∫

dx
√

|p(x)|
exp

[

i

~

(
∫ x

q1

p(x)dx− xp

)]

. (1.108)

Integrals in the form

I =

∫

dxA(x) exp

(

i

~
Φ(x)

)

(1.109)

can be approximated using the method of stationary phase. The basic
ideas is that as ~ → 0 the exponential oscillates rapidly except near those
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points, xs, where the phase Φ(x) varies least rapidly, Φ′(xs) = 0, ie is
stationary. Expanding around the stationary phase point we have

Φ(x) = Φ(xs) +
(x− xs)

2

2
Φ′′(xs) (1.110)

The integral is then approximated by

I ≃ A(xs) exp

(

i

~
Φ(xs)

)∫

exp

[

i

~

(x− xs)
2

2
Φ′′(xS)

]

dx (1.111)

We may now use the result (Fresnel)

∫ ∞

−∞
eiax2

dx =

√

π

|a| exp
[

i
π

4
sgn(a)

]

(1.112)

Then

I ≃
√

2π~

|Φ′′(xs)|
A(xs) exp

[

i

~
Φ(xs) +

iπ

4
sgn[Φ′′(xs)]

]

. (1.113)

If we use the phase convention
√
i = eiπ/4, the integral becomes

I ≃
√

2πi~

Φ′′(xs)
A(xs) exp

[

i

~
Φ(xs)

]

(1.114)

The stationary phase approximation may be extended to d-dimensions,

I ≃ (2πi~)d/2

√

|∂2Φ/∂xn∂xm|
A(xs) exp

[

i

~
Φ(Xs)

]

(1.115)

Using the stationary phase approximation we find the momentum am-
plitude is given by

ψ̃(p) =
ψ0

√

|p(xs)p′(xs)|
exp

{

i

~

[∫ xs

q1

p(x)dx− pxs

]

+
iπ

4
sgn[p′(xs)]

}

(1.116)
Let us now try to follow the phase of the probability amplitude on a
complete orbit around the trajectory in phase space. Consider the phase
space orbit shown in figure (1.1)

Between points 1 and 2 the position amplitude is

ψ(x) =
ψ0

√

|p(x)|
exp

[

i

~

∫ x

q1

p(x)dx

]

(1.117)
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x
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3 4

figure 1_2

Fig. 1.1. Phase portrait of a typical one dimensional oscillator.

At point 2 we transform to the momentum representation

ψ̃(p) = ψ0

√

∣

∣

∣

∣

x′(p)
p

∣

∣

∣

∣

exp

{

i

~

[

∫ x(p)

q1

p(x)dx− px(p)

]

− iπ

4

}

(1.118)

Note that xs has been written as a function x(p) to indicate that xs is
a function of p. Also x′(p) is negative in the lower left quadrant. This
representation is invalid where the trajectory crosses the the p axis, we
we transform back to position space at point 3.

ψ(x) =
1√
2π~

∫

dpψ̃(p) exp

(

i

~
px

)

=
ψ0√
2π~

∫

dp

√

∣

∣

∣

∣

x′(p)
p

∣

∣

∣

∣

exp

{

i

~

[

∫ x(p)

q1

p(x)dx− px(p) + px

]

− iπ

4

}

We now use the method of stationary phase;

Φ(p) =
1

~

[

∫ x(p)

q1

p(x)dx− px(p) + px

]

Φ′(p) = x− x(p)

Φ′′(p) = x′(p)
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Repeating the same steps as above we find the position probability am-
plitude is

ψ(x) =
ψ0

√

|p(x)|
exp

(

i

~

∫ x

q1

p(x)dx− iπ

2

)

(1.119)

We thus see from Eq.(1.117) that in passing through the turning point a
phase shift of π/2 has occurred. In this way we see that after a complete
orbit we find a phase shift of

∆Φ =
1

~
S − νπ

2
(1.120)

where the action on the orbit is

S =

∮

p(x)dx (1.121)

and ν is called the Maslov index. If the amplitude is not to be multi
valued on a complete orbit we need

S − νπ

2
= 2πn n = 1, 2, . . . (1.122)

Apart from the Maslov index this is equivalent to the Bohr Sommerfeld
quantisation condition of early quantum mechanics.

Exercise 1.15 Evaluate the action on the orbit of a harmonic oscillator,

H =
p2

2m
+
mω2

2
x2 (1.123)

and show that Eq.(1.122) implies the energy quantisation condition En =
~ω(n + 1/2). Note that the Maslov index is required to get the ground
state energy correct.

Exercise 1.16 In the WKB approximation show that the mean kinetic
energy for a bound state |ψn〉 of a potential V (x) is given by

〈ψn|T̂ |ψn〉 =
1

2

(

n+
1

2

)

dEn

dn
(1.124)

Exercise 1.17 With the ansatz ψ(x, t) = φ(x, t)eiS(x,t)/~ show that in the
limit ~ → 0, S obeys the Hamilton-Jacobi equation

∂S

∂t
+

1

2m
(∇S)2 + V (x) = 0 (1.125)
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1.4 Phase space quasi-probability distributions.

The description of classical mechanics as a flow of probability density
on phase space is such an appealing geometric picture that many at-
tempts have been made to find some quantum version. We will only
consider two such methods; the Wigner function and the Husimi func-
tion (also called the Q-function). These methods generally go by the
name of quasi-probability methods to make it clear that these are special
ways to characterise quantum states in terms of phase space. In the case
of the Wigner function, the resulting densities are not even positive for
some quantum states ! While in the case of the Husimi function, delta
functions cannot occur.

1.4.1 The Wigner function.

The Wigner function, W (x, p) was the first attempt to develop a phase
space representation of quantum states. The function is constructed in
such a way that the marginal distributions reproduce the quantum po-
sition and momentum probability distributions. The price one pays for
this requirement is that the resulting Wigner functions are not necessarily
positive and thus have no interpretation as true probability distributions
on phase space.

The Wigner function for a quantum State ρ is

W (x, p) =
1

2π~

∫ ∞

−∞
eipy/~〈x− y

2
|ρ|x+

y

2
〉 (1.126)

Exercise 1.18 Show that the Wigner function uniquely determines the
density operator by inverting Eq.(1.126) to obtain 〈x|ρ|x′〉.
The marginal distributions of the Wigner function are given by

∫ ∞

−∞
dpW (x, p) = 〈x|ρ|x〉 (1.127)

∫ ∞

−∞
dxW (x, p) = 〈p|ρ|p〉 (1.128)

The average of a quantum operator is given by

tr(Âρ) =

∫ ∞

−∞
dxdpW (x, p)A(x, p) (1.129)

where the function A(x, p) is the Wigner-Weyl symbol for the operator

Â. The Wigner symbol of an operator is given by

A(x, p) =

∫

dy〈x− y

2
|Â|x− y

2
〉eipy/~ (1.130)
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We now consider taking averages in the other direction, that is forming
averages over the Wigner phase space variables. If we try and form mo-
ments of the Wigner function we do not always reproduce the correspond-
ing quantum average. In fact the Wigner function moments correspond
to quantum averages of symmetrically ordered operator products. This
is called the Wigner-Weyl correspondence.

A little reflection shows that the Wigner function may be written as
the Fourier transform of a characteristic function,

W (x, p) =
1

(2π~)2

∫

dy

∫

dkei(py−kx)/~tr(ρei(kx̂−p̂y)/~) (1.131)

where the Wigner characteristic function is

χw(y, k) = tr(ρei(kx̂−p̂y)/~) (1.132)

The characteristic function of a probability distribution is used as a mo-
ment generating function. In this case the characteristic function gener-
ates the symmetrically order averages as

tr(ρ(x̂np̂m)s) =
∂n+m

∂kn∂ym
χw(y, k)|y=k=0 (1.133)

where (ab)s means the symmetrically ordered product. Thus we find

tr(ρ(x̂np̂m)s) =

∫ ∞

−∞
dxdpW (x, p)xnpm (1.134)

The fact that the moments of the Wigner function do not directly give
the quantum averages, but must be augmented by an operator ordering
rule is a typical feature of quasi probability distributions.

Exercise 1.19 Calculate the Wigner function for an energy eigenstate
of a simple harmonic oscillator. Show that for certain energies it may be
negative.

The Wigner function itself does not have a physical interpretation, but
the square of the Wigner does[3].

The Wigner function inherits an evolution equation from the Schrödinger
equation. The result is

∂W

∂t
= {H(cl),W}PB +

∑

n≥1

~(−1)n

22n(2n + 1)!
∂2n+1

x V (x)∂2n+1
p W (x, p) (1.135)

The first term is the classical Liouville equation and H(cl) is just the clas-
sical Hamiltonian function. Note that if the potential is no more than a
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quadratic function of position, the Wigner function equation corresponds
to the classical Liouville equation. In all other cases the Wigner function
dynamics can be very different. Under some circumstances however the
higher order derivatives may be neglected at least for short times. Un-
fortunately these circumstances certainly do not include classical chaotic
systems. We shall return to this point in part B.

Exercise 1.20 Derive the Wigner function evolution equation for the an-
harmonic oscillator

H =
p2

2m
+ ax2 + bx4 (1.136)

1.4.2 The Husimi function.

In elementary introductions to quantum mechanics, the probability dis-
tribution for the measured values of a physical quantity, such as position,
are given by a projection valued measure

P (q)dq = tr(ρ|q〉〈q|dq) (1.137)

It turns out that this is a special case. More generally we need measure-
ments described by positive operator valued measures Ê(q) such that

P (q)dq = tr(ρÊ(q)dq) (1.138)

It is possible to define a positive operator valued measure which corre-
sponds to the simultaneous measurement of position and momentum. The
statistics are of course given by a true probability density on phase space.
However the moments of this distribution do not directly give the quan-
tum averages. An extra rule needs to be supplied which essentially adds
to the moments a small amount of noise which arises from the attempt
to measure position and momentum simultaneously.

The model of Arthurs and Kelly consists of two meters which are al-
lowed to interact instantaneously with the system. The interaction cou-
ples one of the meters to position and the other to momentum, encoding
the results of the measurement in the final states of the meters. Projec-
tive measurements are then made on each of the meter states separately.
These measurements can be done simultaneously as the position and mo-
mentum operators for distinct meters commute. For appropriate meter
states this measurement forces the conditional state of the system into a
Gaussian state. We assume some appropriate length scale such that the
positions and momenta are dimensionless, and satisfy [X̂, P̂ ] = i.

The appropriate unitary interaction is

Û = exp
[

−i
(

X̂P̂1 + P̂ P̂2

)]

. (1.139)
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Here the subscripts refer to the two detectors, initially in minimum un-
certainty states |d1〉 and |d2〉 respectively. In the position representation
these are

〈xj|dj〉 = (π∆2
j )

− 1
4 exp

(

−x2
j/2∆

2
j

)

(1.140)

where ∆1 and ∆2 quantify the position dispersion in each of the meters.
For simplicity we will assume that the length scale has been chosen so that
∆1 = ∆2 = 1. This gives equal variances for position and momentum of
1/2.

After the interaction, the detectors are measured in the position basis.
The measurement result is thus the pair of numbers (X1,X2). Following
the theory given above, the measurement operator for this result is

M̂(x1, x2) = 〈x1|〈x2|Û |d2〉|d1〉 (1.141)

With a little effort it is possible to show that M̂(x1, x2) is proportional
to a projection operator:

M̂(x1, x2) =
1√
2π

|(x1, x2)〉〈(x1, x2)|. (1.142)

Here the state |x1, x2〉 is a Gaussian minimum uncertainty state with a
position probability amplitude distribution

〈x|(x1, x2)〉 = (π)−1/4 exp

[

ixx2 −
1

2
(x− x1)

2

]

(1.143)

This is a state with mean position and momentum given by x1 and x2

respectively, and with the variances in position and momentum equal to
1/2.

Exercise 1.21 Verify Eq.(1.142).

The corresponding probability density for the observed values, (x1, x2)
is found from the effect density

Ê(x1, x2)dx1dx2 =
1

2π
|x1, x2〉〈x1, x2|dx1dx2. (1.144)

Exercise 1.22 Show that
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2Ê(x1, x2) = 1 (1.145)

From this positive operator valued measure (POM) we can show that

E[X1] = 〈X̂〉, E[X2
1 ] = 〈X̂2〉 +

1

2
, (1.146)

E[X2] = 〈P̂ 〉, E[X2
2 ] = 〈P̂ 2〉 +

1

2
, (1.147)
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where 〈Â〉 = Tr[Âρ] is the quantum expectation, while E is a classical
average computed by an integral over the probability density, ℘(x1, x2).
Thus the readout variables X1 and X2 give, respectively, the position and
momentum of the system with additional noise.

It is more conventional to denote the state |(x1, x2)〉 by |α〉, where
the single complex parameter, α, is given by α = (x1 + ix2)/

√
2. In

this form the states are known as coherent states. The corresponding
effect density is F̂ (α) = |α〉〈α|/π and the resulting probability density

℘(α)d2α = Tr
[

F̂ (α)ρ
]

d2α. This is known as the Q-function in quantum

optics. For different initial pure states for the detectors, the more general
probability density for observed results is known as the Husimi function.

Exercise.
Prove that the Husimi function is positive and bounded and thus
delta function Husimi functions are not possible.

Exercise.
Prove that the Husimi function uniquely determines the density op-
erator, and find the inversion formula.

Exercise.
Find the characteristic function ( the Fourier transform) for the Q
function and express it as an average of a characteristic operator.

Exercise.
Prove that there are physical states for which the Husimi function
has zeros. ¶

The Husimi function inherits a dynamics from the Schrödinger equa-
tion in a similar fashion to the Wigner dynamics. As for the Wigner
function, the evolution equation may be a partial differential equation
with infinitely many derivatives. Even if the equation truncates to only
second order derivatives it does not take the form of a legitimate Probabil-
ity density evolution equation. See G.J.Milburn , “Quantum and classical
Liouville mechanics of the anharmonic oscillator”, Phys.Rev. A 33, 674-
685, (1986).

¶ In fact apart from two constants, the Q function is uniquely determined by its zeros.
This is a consequence of the Wierstrass theorem for entire analytic functions oforder
two.
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