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Quantum resonances.

There is a quantum analog of classical second order perturbation
theory that leads to the identification of first and second order
resonances.

Ĥ(t) = Ĥ0 + ǫĤ1(t) .

For ǫ = 0 the Floquet operator is

F̂ = exp

(

−2πi Ĥ0

k

)

,

where Ĥ0 = p̂2/2 − κ cos q̂.

Denote the stationary states of Ĥ0 with energy En(p) by |En, p〉,
then |En, p〉 is a quasi-stationary state for F̂ with quasi-energy
en(p) = En(p).



Quantum resonances.

In analogy with time-independent quantum perturbation theory we
assume that for small ǫ the perturbed quasistationary states |en, p〉
and quasifrequency en(p) are close to |En, p〉 and En(p)
respectively, and then attempt to find corresponding asymptotic
expansions in ǫ.



Quantum resonances.

Let |en, p, t〉 satisfy the time-dependent Schrödinger equation

ik
d

dt
|en, p, t〉 = Ĥ(t)|en, p, t〉

subject to the condition |en, p, 2π〉 = exp(−2πien(p)/k)|en, p, 0〉.

Define, |vn, p〉 = exp(ien(p)t/k)|en, p, t〉 which are periodic in t,
and

en(p)|vn, p〉 = −ik
d

dt
|vn, p〉 + Ĥ(t)|vn, p〉 .



Quantum resonances.

Seek,

en(p) = En(p) + ǫe
(1)
n (p) + ǫ2e

(2)
n (p) + O(ǫ3) ,

|vn, p〉 = |En, p, 0〉 + ǫ|v
(1)
n , p〉 + ǫ2|v

(2)
n , p〉 + O(ǫ3) .

As in classical p.t. singularities arise in these expansions at
resonances.

For each classical resonance ∆n ωcl(J) − l = 0 there will be energy
bands with En(p) and En−∆n(p) satisfying the near-resonance
condition En(p) − En−∆n(p) ≈ kl . The perturbed quasistationary
state |en, p〉 will rapidly develop a significant component along
|en−∆n, p〉 as ǫ is increased.



Quantum resonances.

This Floquet state is a superposition of a dominant state |E11, 0〉
and two other states |E9, 0〉 and |E13, 0〉 satisfying the
near-resonant conditions: E11(0) − E9(0) = 0.103 ≈ 2k , and
E11(0) − E13(0) = −0.101 ≈ −2k . The interference between near
resonant states has caused the Q function in the figure to become
concentrated about the stable regions of the classical second-order
resonance.



Example: kicked rotor.

A free rotor subject to impulsive torques:

H(t) =
L2

2
+ k cos θ

∑

n

δ(t − n)

The Floquet map is then defined by

θn+1 = θn + Ln+1

Ln+1 = Ln + k sin θn

Period-one fixed points:

θ∗ = θ∗ + L∗

L∗ = L∗ + k sin θ∗

L∗ = 0 & θ∗ = 0, π



Example: kicked rotor.

Stability:
(

δθn+1

δLn+1

)

=

(

1 ± k 1
±k 1

)(

δθn
δLn

)

+ : θ = π
− : θ = 0

1. θ = 0
eigenvalues: λ± = (1 − k/2) ± i

√

1 − (1 − k/2)2

stable: 0 < k < 4
2. θ = π
eigenvalues: λ± = (1 + k/2) ±

√

(1 + k/2)2 − 1
unstable



Example: kicked rotor.

Area preserving?
λ+λ− = 1

Bifurcation?

fixed point at θ∗ = 0 undergoes a change of stability for k > 4



Example: kicked rotor.

very rich bifurcation dynamics

L

θπ−π

0.6/2π k=



Example: kicked rotor.

Quantum description: unitary Floquet operator, F̂ , defines a
unitary dynamical map:

|ψn+1〉 = F̂ |ψn〉

F̂ = exp

(

−
i

~
k cos θ̂

)

exp

(

−
i

~

τ

2
L̂2

)

explicit kick period τ .



Example: kicked rotor.

The classical system shows diffusive growth in energy.
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The quantum system does NOT diffuse in momentum!



Example: kicked rotor.

Experimental verification: cold atoms in optical laser pulses.


