
MATH4104: Quantum nonlinear dynamics.

Lecture ELEVEN.

Quantum Billiards.

G J Milburn

The University of Queensland

S2, 2009



Classical and Quantum billiards.

red arrow: initial momentum

green arrow: return momentum

from Stone, Physics Today, August 2005. 

ergodic dynamics: all orbits eventually pass through almost every
point of the surface of constant energy, H(p, q) = E (a 2N − 1
dimensional surface in general), instead of being confined to an
N−torus like integrable systems.

Ergodicity is usually associated with chaotic motion (but does not
imply it), where we define chaotic motion in terms of sensitive
dependance on initial conditions, (eg in terms of a Bernoulli map).



Classical and Quantum billiards.

Chaotic billiards: Sinai billiard (left) and Bunimovich stadium
(right)

isolated regular orbits (bottom). 



Quantum billiards in nanotechnology

The quantum dot...

quantum dot

2DEG= two dimensional electron gas.



Quantum billiards in nanotechnology

Conductance depends on matching the incoming electron energy
to a resonant energy eigenstate.

An analogy ... matching the frequency of the input light to a
cavity transmission spectrum.
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Prelude to quantum scattering.

A one dimensional potential,

V (x) =















∞ x ≤ 0
0 x < a

V0 a ≤ x ≤ b

0 x > b

u±(x): position probability amplitude for particles traveling in the
±x direction, in the region x > b, with definite energy E < V0.

These are plane wave states of the form

u±(x) = e±ikx (1)

where k2 = 2mE

~2 .



Prelude to quantum scattering.

By matching the boundary condition is it easy to show that at
x = b ,

u+(b)

u−(b)
= −e2iφ(k)

where

tanφ(k) =
k

α

[

f (k)eα(b−a) + e−α(b−a)
]

[

f (k)eα(b−a) − e−α(b−a)
] (2)

where

α =

√

2m(V0 − E )

~2
(3)

f (k) =
α tan ka + k

α tan ka − k
(4)

There is only a phase shift between left-going and right-going
states.



Prelude to quantum scattering.

We can calculate the (relative) probability P(k) to find the particle
in 0 ≤ x ≤ a , relative to the probability to find a particle at
x > b with negative momentum,

P(k) = 4

{

sinφ(k) cosh(α(b − a)) −
k

α
cosφ(k) sinh(α(b − a))

}2

(5)
We now define the dimensionless parameters, the scaled energy x ,
the scaled barrier strength w and the scaled barrier length l ,

x = ka (6)

w2 =
2mV0

~2
(b − a) (7)

l2 =
b

a
− 1 (8)



Prelude to quantum scattering.

Plot the function P(k) and cosφ(k) versus the scaled input energy,
x . This is a kind of spectrum of excitation for the quasi bound
state in the well. Note the resonance at a particular value of input
energy. Why does this maximum occur?

Figure: The relative occupation probability for the bound state versus the
input energy with w = 3, l = 1.0



Prelude to quantum scattering.

For the infinite square well,

En =
π2

~
2n2

2ma2
n = 1, 2, . . .

In the limit of E << V0 the peak of the spectrum corresponds to
the allowed energies of the bound state of the infinite square well.



Scattering to billiards.

As for this one dimensional billiard, we will approach the physics of
the system as a kind of scattering problem.
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Scattering to billiards.

As for this one dimensional billiard, we will approach the physics of
the system as a kind of scattering problem.

The classical dynamics of the corresponding closed system will
determine, to a good approximation, what we see in the quantum
scattering problem.

To probe the billiard problem spectroscopically we need to weaken
the classical perfect billiard system to some extent. We need to
keep the disturbance due to this measurement to a minimum.

Given this, we seek to understand the quantum scattering problem
by determining the classical billiard problem first.



Quantum billiards.

In a two dimensional billiard system a particle of mass m moves
freely in the plane until it encounters a wall, at which point it
undergoes a perfectly elastic collision.

Schrödinger equation in the coordinate representation

i~
∂ψ(x , y , t)

∂t
= −

~
2

2m
∇2ψ(x , y , t) (9)

subject to the Dirichelet boundary condition

ψ(x , y , t)|S = 0 (10)

where S denotes the curve that defines the boundary of the billiard.



Quantum billiards.

The energy eigenstates ψn(x , y) and allowed energies, En = ~ωn,
are obtained by separating the time dependence as

ψn(x , y , t) = ψn(x , y)e−iωmt (11)

and solving the time independent equation

−
~

2

2m
∇2ψn(x , y) = Enψn(x , y) (12)

∇2ψn(x , y) + k2
nψ(x , y) = 0 (13)

with the dispersion relation

ωn =
~

2m
k2
n , (14)

subject to the boundary condition.



A microwave analogy for quantum billiards.

Consider an electromagnetic wave sustained inside a conducting
boundary; a resonant cavity.

The equation for the electric and magnetic field amplitudes are

(∇2 + k2)~E = 0 (15)

(∇2 + k2)~B = 0 (16)

with the dispersion relation ω = ck and the boundary conditions

~n × ~E = 0 (17)

~n · ~B = 0 (18)

where ~n is a unit normal to the surface of the boundary.



A microwave analogy for quantum billiards.

To make this look like a quantum billiard problem we consider
resonators with cylindrical symmetry, but varying cross sections.

Taking the z axis parallel to the axis of cylindrical symmetry the
boundary conditions are

Ez |S = 0 (19)

~∇⊥Bz |S = 0 , (20)

where ~∇⊥ denotes the normal derivative.



A microwave analogy for quantum billiards.

These can be satisfied for transverse magnetic modes (TM)

Ez(x , y , z) = E (x , y) cos(nπz/d) (21)

Bz(x , y , z) = 0 (22)

where
[

∇2 + k2 −
(nπ

d

)2
]

E = 0 (23)

with Dirichelet boundary condition E (x , y)|S = 0 on the surface.
For frequencies ν < c/2d (k < π/d) only TM modes with
n = 0 are possible.

Thus the electric field in the x , y plane must satisfy
(∇2 + k2)E = 0 with Dirichelet boundary conditions.
(The dispersion relation for electromagnetic waves however is
different: ω = ck).



A microwave analogy for quantum billiards.

The equivalence to the quantum billiard problem is apparent and
for this reason many early experiments on quantum billiards were
microwave cavity experiments.

A crucial difference: In the microwave case we are concerned with
a true field amplitude in the cavity.
In the quantum case the analogous object is a probability

amplitude.

This means the kinds of measurements that we could consider in
the two cases are very different. It is possible to measure a field
amplitude, while generally we cannot measure a quantum
probability amplitude directly.



A microwave analogy for quantum billiards.

measure the field inside the cavity by introducing a small antenna
into the resonator through a small hole, and measuring the amount
of power reflected back when the antenna is used to excite the
cavity.

The reflected power is monitored as a function of the frequency of
the injected signal to give a spectrum.

Each minimum in the reflected power corresponds to a resonant
eigenfrequency of the cavity.



A microwave analogy for quantum billiards.

Figure: From 2.12 in Stockman. The spectra at two different
temperatures are recorded. At room temperature there is a significant
amount of thermally excited background radiation that masks the cavity
spectrum. At low temperature with the walls are superconducting, and
the spectra reflects more closely the billiard spectrum.



Statistics of spectra.

We will study complex spectra statistically.

The sequence of successive eigenvalue differences sn = En − En−1

is computed and the relative frequency of values of sn plotted to
construct a distribution P(s) of eigenvalue spacings.

The variable sn is scaled so that the average spacing is unity.

FInd that these distributions can be classified into a few general
classes that reflect fundamental dynamical properties of the
system.



Statistics of spectra.

Eigenvalues either tended to bunch so that P(s) was peaked at
zero or they seemed to repel each other so that P(s) is peaked
away from zero.

The stadium billiard the spacing distribution is well fitted by the
Wigner distribution

P(s) =
π

2
s exp[−

π

4
s2] (24)

It is no coincidence that this distribution is associated with a
billiard problem that is chaotic.



Statistics of spectra.

If we measure the spectrum of a rectangular cavity, for which the
corresponding billiard problem is integrable, we find that

P(s) = e−s (25)

a Poisson distribution which exhibits level bunching.



The BGS cojecture.

1984 however Bohigas, Giannoni and Schmidt conjectured that:

“statistical properties of long sequences of energy levels

of generic quantum systems whose classical counterparts

are chaotic have their pattern in long sequences of

eigenvalues of large random Hermitian matrices with

independent, identically distributed entries.”

vindicated in countless real and numerical experiments, yet a
rigorous proof is elusive.



Random matrices and number theory.


