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The BGS cojecture.

“statistical properties of long sequences of energy levels

of generic quantum systems whose classical counterparts

are chaotic have their pattern in long sequences of

eigenvalues of large random Hermitian matrices with

independent, identically distributed entries.”

vindicated in countless real and numerical experiments, yet a
rigorous proof is elusive.



Symmetry.

Let H be Hamiltonian matrix (possibly infinite dimensional)

Let U be the unitary transformation corresponding to some
symmetry U†HU = H.

We can then simultaneously diagonalise U,H.

Example: hydrogen atom

H =
~p2

2m
−

e

4πǫ0r2

Invariant under arbitrary rotations of θ around axis ~n

U(~n, θ) = exp−iθ~L·~n

where ~L is the angular momentum operator.



Symmetry.

The eigenvalues of total angular momentum are
l(l + 1), . . . l = 0, 1, 2 . . ..

We can then block diagonalise H so that in each block the angular
momentum is fixed

l=0

l=1

(3 x 3)

l=2

(5 x 5)

..........



Random matrices.

Only work with the matrix in a given block, corresponding to one
of the eigenvalues of the conserved quantity, and compute
eigenvectors and eigenvalues.

For complex systems, the block can be very large and there are
many eigenvalues.

Then rescale the energy so that the average density is unity.

The average density: take a collection of subsets of energy levels
and for each subset compute the number of levels per energy
interval, ρ(E ).

Then average that density over the collection.



Statistical analysis of spectra.

The idea is to focus on a large subset of energy levels as a
representative ensemble.

For example, look at a subset of nuclear energy levels

From Brody et al, Rev. Mod. Phys. 1981

These levels have the same symmetry and the energy scale has
been chosen so that the average spacing is the same.



Statistical analysis of spectra.

Look at a histogram of nearest neighbour spacing for each case.

From Brody et al, Rev. Mod. Phys. 1981

Even though the spectra look different they have a statistical

equivalence. The solid line is a theoretical model called the Wigner
distribution.



Statistical analysis of spectra.

The cumulative number of levels up to a large energy over some
subset: N(E )
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The energy density

ρ(E ) =
dN

dE
=
∑

n

δ(E − En)

We can also take the average, ρ(E ), of this over different subsets
of energy levels.



Random matrices.

We model the statistical fluctuations of a subset of real energy
levels by looking at the eigenvalues of random matrices drawn from
a suitable ensemble.

It must be Hermitian H† = H

In the eigenbasis every Hamiltonian is real, but in an arbitrary basis
it is complex hermitian in general.

We can restrict all the matrices in a given ensemble to have a
particular symmetry, eg real symmetric, to reflect some known
symmetry in the real eigenvalue problem.

We chose the matrix elements as random variables according to
some distribution, eg Gaussian.



Random matrices.

If the Hamiltonian is invariant under time reversal and does not
contain spin half interactions, it can always be chosen as real.

This property is preserved under orthogonal transformations.

H ′ = OHOT OOT = 1

In this case we must restrict the class of unitary transformations to
be simply orthogonal matrices, and we will refer to the ensemble of
random matrices with this property as an orthogonal ensemble.

If matrix elements are gaussian distributed, we have the gaussian

orthogonal ensemble (GOE).



Random matrices.

Gaussian symplectic ensemble (GSE). Systems with time reversal
invariance and with spin interactions, eg spin-orbit interaction

H = g~L · ~S

where
~L = −i~~r × ~p

is orbital angular momentum and ~S = ~

2~σ is the spin of the particle
and ~σ = σx~x + σy~y + σz~z and σα are the Pauli matrices.



Random matrices.

Such Hamiltonians are even dimensional and transform into each
other under the symplectic transformation:

H ′ = SHSR

where S is a sympletic matrix which means it must satisfy
SSR = 1 with

SR = ZSTZ−1

where
Znm = iδnmσy

where

σy =

(

0 −i

i 0

)



Gaussian orthogonal ensemble.

A real symmetric matrix in N dimensions requires N(N + 1)/2 real
numbers to specify the matrix elements.



Gaussian orthogonal ensemble.

A real symmetric matrix in N dimensions requires N(N + 1)/2 real
numbers to specify the matrix elements.

The joint probability distribution p(H11,H12, . . . ,HNN) is then
invariant under orthogonal transformations
p(H11,H12, . . . ,HNN) = p(H ′

11,H
′
12, . . . ,H

′
NN).



Gaussian orthogonal ensemble.

A real symmetric matrix in N dimensions requires N(N + 1)/2 real
numbers to specify the matrix elements.

The joint probability distribution p(H11,H12, . . . ,HNN) is then
invariant under orthogonal transformations
p(H11,H12, . . . ,HNN) = p(H ′

11,H
′
12, . . . ,H

′
NN).

The trace of any matrix is invariant under orthogonal
transformation tr(OAOT ) = tr(A).



Gaussian orthogonal ensemble.

A real symmetric matrix in N dimensions requires N(N + 1)/2 real
numbers to specify the matrix elements.

The joint probability distribution p(H11,H12, . . . ,HNN) is then
invariant under orthogonal transformations
p(H11,H12, . . . ,HNN) = p(H ′

11,H
′
12, . . . ,H

′
NN).

The trace of any matrix is invariant under orthogonal
transformation tr(OAOT ) = tr(A).

The joint distribution must be a function of the trace of powers of
the Hamiltonian;

p(H11,H12, . . . ,HNN) = f [trH, tr(H2), . . .]



Gaussian orthogonal ensemble.

If we now require the matrix elements to be uncorrelated

p(H11,H12, . . . ,HNN) = p(H11)p(H12) . . . p(HNN)

then

p(H11,H12, . . . ,HNN) = C exp
[

−Btr(H) − Atr(H2)
]

As this is Gaussian in form, we can shift the average to ensure that
B = 0. The normalisation fixes the factor C ,

∫

p(H11,H12, . . . ,HNN)dH11...dHNN = 1

We are thus led to the distribution

p(H11,H12, . . . ,HNN) =

(

A

π

)N/2(2A

π

)N(N−1)/2

exp

(

−A
∑

n,m

H2
nm

)



Gaussian orthogonal ensemble.

The eigenvalue distribution is given by

P(E1,E2, . . . ,EN) ∼
∏

n>m

(En − Em) exp

(

−A
∑

n

E 2
n

)



Gaussian orthogonal ensemble.

Calculate the nearest neighbour spacing distribution. We will only
consider the 2 × 2 case as the results are independent of the
dimension.

p(s) =

∫ ∞

−∞

dE1

∫ ∞

−∞

dE2P(E1,E2)δ(s − |E1 − E2|)

= C

∫ ∞

−∞

dE1

∫ ∞

−∞

dE2|E1 − E2| exp

(

−A
∑

n

E 2
n

)

×δ(s − |E1 − E2|)



Gaussian orthogonal ensemble.

the two constants are fixed by

∫ ∞

0
p(s)ds = 1

∫ ∞

0
sp(s)ds = 1

Thus
p(s) =

π

2
s exp

(

−
π

4
s2
)



Gaussian unitary and symplectic ensemble.

For completeness we give the eigenvalue spacing distributions for
the GUE and the GSE as well as the GOE.

p(s) =







π
2 s exp

(

−π
4 s2
)

(GOE)
32
π2 s

2 exp
(

− 4
π s2
)

(GUE)
218

36π3 s
4 exp

(

−π
4 s2
)

(GSE)

(1)

Note the dependence at small spacing. The GOE is linear, the
GUE is quadratic and the GSE is quartic.

In the case of Floquet operators we need to consider Gaussian

circular ensembles as all eigenvalues lie on the unit circle. There is
an equivalent breakdown in terms of orthogonal, unitary and
sympletic transformations.



Average density of states.

density of states defined as

ρ(E ) =
∑

n

δ(E − En)

In many cases we find that,

ρ(E ) = ρ(E ) + ρosc(E )

The average here is a spectral average taken over the energy
eigenvalues. This can often be replaced to a good approximation
by an average over some ensemble of random matrices provided
that the number of levels is very large.

This is a kind of ergodic theorem for energy eigenvalues and
underpins the BGS conjecture.



Back to quantum dots.

Look at tunneling through quasi-bound states

from Alhassid Rev. Mod Phys. �g 2



Back to quantum dots.

Ballistic regime, many elastic reflections from the walls before
exiting the dot.

from Alhassid Rev. Mod Phys. �g 5

BALLISTIC

DIFFUSIVE



Modes.

Define amplitudes for in-going or out-going states of definite
momentum

X

a1

b
1

a
2

b2

lead-1

lead-2

a: in-going

b: out-going

b1 = ra1 + t ′a2

b2 = ta1 + r ′a2



Multiple leads.

A 2d mesoscopic cavity connected to L one dimensional leads or

waveguides. The arrows indicate ingoing, a
(l)
n or outgoing

waves,b
(l)
n . In waveguide l there can be Nl such modes. (from

Mello and Baranger, Waves Random Media, 9, 105 (1999)).



Conductance: Landauer-Buttiker.

Landauer and Buttiker: the conductance of a single channel of
transmission probability T is

G =
2e2

h
T

where T = |tab|
2 and tab is the relevant amplitude for scattering

from lead a to lead b.
For the two lead case,

G =
2e2

h
tr(tt†)

Find the eigenvalues, τα, of tt†

G =
2e2

h
tr

∑

α

τα

The conductance is determined by the eigenvalues of a

hermitian matrix.



Conductance: Landauer-Buttiker.

Electrons are not neutral billiard balls but carry a charge. The
energy required to put a single electron into the cavity is

Ec =
e2

2C
(2)

A quantum dot has a very small capacitance, C. Expect
Ec >> ∆E = En − En−1, the billiard spectral gaps.

A plot of conductance versus energy(= bias voltage) will show
peaks spaced equally by the charging energy. This is called a
Coulomb blockade.

The height of each peak will be determined by the scattering
matrix.



Experiments

Jalabert, Stone and Alhassid (Phys. Rev. Letts. 68, 3468,
(1992).) A stadium was desymmetrised by replacing one quarter
circle by a cosine curve (insert in figure 6.7). The conductance
peak heights, gn are, apparently random.

Find that a GOE of random matrices can model the mesoscopic
conductance of a stadium.



Experiments

A more detailed analysis based on random matrix theory (Alhassd
and Lewenkopf, Phys. Rev. B 55, 7749 (1997)), shows that the
distribution of peak heights for a symmetric double lead chaotic
mesoscopic cavity is

P(g) =

√

1

πs0g
e−g/s0

where s0 determines the average conductance peak height

E(g) =
s0

2



Experiments

This theory is found to be in very good agreement with experiment
of Folk et al. Phys. Rev. Lett. 76, 1699 (1996).



Experiments

Measurement of Discrete Energy-Level Spectra in Individual

Chemically Synthesized Gold Nanoparticles.

Kuemmeth et al., NANO LETTERS (2008).

Integrated probability distribution of level spacings.
For a chaotic quantum dot with strong spin-orbit coupling, RMT predicts that the level spacings for B=0 should be

described by a Gaussian symplectic ensemble (spin rotation invariance is preserved) with a transition to a Gaussian

unitary ensemble for large magnetic fields where time reversal symmetry and spin-rotation symmetry are broken


