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Two quantum principles.

THE QUANTUM PRINCIPLE I.

The physical universe is irreducibly random.

Given complete knowledge of the state of a physical system, there
is at least one measurement the results of which are completely
random.

( Contrast classical mechanics: Given complete knowledge of the
state of a physical system, the results of all measurements are
completely certain.)
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Two quantum principles.

THE QUANTUM PRINCIPLE II.

Given complete knowledge of a physical state there is at least one
measurement the results of which are certain.

CERTAINTY WITHIN UNCERTAINTY.
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Probability amplitudes.

The quantum theory enables us to calculate the probability for any
measurement result.

But, we need a new mathematics of probability amplitudes.

A quantum state is a list of probability amplitudes for the
measurement of a physical quantity, e.g momentum, energy...

Given a list of probability amplitudes for one kind of measurement,
we can generate the list for all physical measurements.
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A simple experiment with light.

Photons at a beam splitter.

What happens if we use light of such low intensity that it has only
one photon ?

The behaviour of any given photon is as random as a coin toss.
The best we can do is give the odds (even in this case). This looks
like a simple coin-toss.
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A simple experiment with light.

’toss’ the photon again:

After the first beam splitter we use two perfectly reflecting mirrors,
one in the downward path and one in the upward path to direct
the photon back onto another, identical, beam splitter. The
photon counters are now moved back to monitor the beams after
the second beam splitter.

What is the probability to detect a photon at, say, the upper
detector, P(U)?
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be transmitted at both, (TT), or it be reflected at the first and
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A simple experiment with light.

If the photon at a beam splitter really is a coin toss:

There are four possible histories for a photon: it can be reflected at
the first beam-splitter and the second beam-splitter (RR), or it can
be transmitted at both, (TT), or it be reflected at the first and
transmitted at the second, (RT) or vice-versa (TR).

Each case is equally likely, so we assign a probability of 1/4 to each
history, P(RR) = P(TT ) = P(RT ) = P(TR). Detection at U can
be achieved in two ways: RR and TT. Bayes’ rule,

P(U) = P(RR) + P(TT ) =
1

4
+

1

4
=

1

2
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A simple experiment with light.

When the experiment is done, the results are completely different:
the photon is always detected at U. Detection at U is certain, so
that P(U) = 1.

In this experiment we see how quantum systems can exhibit both
irreducible uncertainty and certainty depending on how we
interrogate the system.
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assign a probability amplitude
. Feynman’s rule (the quantum Bayes’ rule):

if an event can happen in two (or more) indistinguishable
ways, first add the probability amplitudes, then square to
get the probability.

Either the photon is counted at the U-detector or it is counted at
the D-detector.
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A simple experiment with light.

Probabilities are not the primary object, rather we first need to
assign a probability amplitude
. Feynman’s rule (the quantum Bayes’ rule):

if an event can happen in two (or more) indistinguishable
ways, first add the probability amplitudes, then square to
get the probability.

Either the photon is counted at the U-detector or it is counted at
the D-detector.

The quantum state is then a list with just two (complex) elements,
(t, r), such that P(D) = |t|2 and P(U) = |r |2.
(Need |r |2 + |t|2 = 1).

Refer to r as the probability amplitude for a photon to be reflected
and t is the probability amplitude for the photon to be transmitted.
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being counted in the U-direction.
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single photon input in the D-direction can be described by the
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according to (1, 0) → (t, r). In a self consistent way we could then
describe the state of a photon input in the U direction as (0, 1).
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A simple experiment with light.

Here a quantum state is an ordered pair of probability amplitudes:
first entry represents the amplitude for a photon to be counted in
the D-direction and the second entry corresponds to a photon
being counted in the U-direction.

single photon input in the D-direction can be described by the
quantum state (1, 0). The beam splitter then transforms the state
according to (1, 0) → (t, r). In a self consistent way we could then
describe the state of a photon input in the U direction as (0, 1).

Does, (0, 1) → (r , t)?

There is a problem with this in the case of a 50/50 beam splitter,
which highlights an important physical principle which we pause to
consider.
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A simple experiment with light.

Time reversal invariance.

The two input states (0, 1) and (1, 0) are physically distinct and
can’t be mapped to the same quantum state for a 50/50 beam
splitter.
To fix use

(1, 0) → (t, r) (1)

(0, 1) → (−r , t) (2)

the probability of transmission and reflection, which are equal to t2

and r2 are the same for D and U input states.
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A simple experiment with light.

(-r,t)

(t,r)

D

U

D

U

(1,0)

(0,1)
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A simple experiment with light.

A note on Dirac notation.

A photon is definitely in the D state, (1, 0) or the U state (0, 1).
We will think of these as basis vectors.

A general state: (t, r) = t(1, 0) + r(0, 1)

Dirac: write (1, 0) = |D〉 and (0, 1) = |U〉

A general state is then |ψ〉 = t|D〉+ r |U〉.
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Quantum mechanics with particles.

A free particle is one that is not acted on by a force. In one
dimension Newtonian physics gives the position as a function of
time as

x(t) = x0 + p0t/m

where x0, p0 are initial position and momentum.

The kinetic energy, depends only on momentum

E =
p2
0

2m

is a constant of the motion

Note: ±p0 have the same energy.
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Quantum mechanics with particles.

A phase-space picture for free particles of definite energy, E .
A distribution of states, all with the same energy,

p

x

p
0

-p
0

Note, the position distribution is uniform.
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Quantum mechanics with particles.

How to describe position measurements?

P(x)

x=0 x=k a

discrete ‘bins’ of width a

x=-k a

histogram of  meas. outcomes

Plot a histograms of number of measurement results that lie in
k-th bin.

Can make bin size — a — arbitrarily small.
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Classical position distribution for states of definite energy.

p

x

p
0

-p
0

P(x)

x=0 x=k ax=-k a

The distribution is uniform (within experimental sampling error).
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Quantum position distribution for states of definite energy.

p

x

p
0

-p
0

P(x)

x=0 x=k ax=-k a

classical phase-space picture quantum position distribution

The distribution is oscillatory.
There are some bins where the particle is never seen.
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with definite energy at the k−th bin:

• in k and travelling with positive momentum and

• in k and travelling with negative momentum.
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with definite energy at the k−th bin:

• in k and travelling with positive momentum and

• in k and travelling with negative momentum.

A(k) = A(k : +p0) + A(k : −p0)

P(k) = |A(k : +p0) + A(k : −p0)|2

= |A(k : +p0)|2 + |A(k : −p0)|2 + 2Re [A(k : +p0)A(k : −p0)
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Quantum position distribution for states of definite energy.

Explanation: there are two indistinguishable ways to find a particle
with definite energy at the k−th bin:

• in k and travelling with positive momentum and

• in k and travelling with negative momentum.

A(k) = A(k : +p0) + A(k : −p0)

P(k) = |A(k : +p0) + A(k : −p0)|2

= |A(k : +p0)|2 + |A(k : −p0)|2 + 2Re [A(k : +p0)A(k : −p0)
∗]

The last term is not always positive, so can cancel the first two
terms... interference.
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Quantum position distribution for states of definite energy.

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

A(n : +p0) =
1√
N

e−2πinap0/h

N is total number of bins and h is Planck’s constant.

Note: ap0 has units of action.
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Quantum position distribution for states of definite energy.

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

A(n : +p0) =
1√
N

e−2πinap0/h

N is total number of bins and h is Planck’s constant.

Note: ap0 has units of action.

In continuum limit: na → x

A(x : +p0) =
1√
N

e−ixp0/~

~ = h/2π
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Example: particle in a box.

An oscillator, but period depends on energy and motion is not
harmonic.

L

x

p

 

p  =    2mE
0

L/2-L/2

 

p  =    2mE
0

-

The period,

T (E ) =
2mL

p
= L

√

2m

E

The area is given by 2L
√

2mE ,

En =
n2h2

8mL2
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x
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x = -L.2 x =  L/2

Probability to find particle outside the box is zero.

Probability to find particle at x = ±L/2 is zero.
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The smallest value of p0 is not zero, (p0)min = h
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Example: particle in a box.

x

x=L/2

x = -L/2

x=0

x = -L.2 x =  L/2

Probability to find particle outside the box is zero.

Probability to find particle at x = ±L/2 is zero.

P(x = ±L/2) = 0

The smallest value of p0 is not zero, (p0)min = h
2L

The minimum allowed energy is Emin = 1
2m

(p0)
2
min = h2

8mL2
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Example: simple harmonic oscillator.

Simple harmonic oscillator: period is independent of energy.

x(t) = x0 cos(2πt/T )

where T is the period of the motion.

Surfaces of constant energy:

E =
p2

2m
+

k

2
x2 (3)
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Example: simple harmonic oscillator.

Classical position prob. distribution for a state of definite energy.

-3 -2 -1 1 2 3

2

4

6

8

V(x)=    kx 
2_

2
1

E

turning points

x
x0-x0

-3 -2 -1 1 2 3

turning points

x0-x0

P(x)
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Example: simple harmonic oscillator.

Quantum SHO.
Fix energy, then

p(x) =

√

2m

(

E − mω2x2

2

)

The momentum is not fixed.

Schorödinger equation is required.

− ~
2

2m

d2

dx2
ψ(x) +

mω2

2
x2ψ(x) = Eψ(x)

In the form Ĥψ(x) = Eψ(x) where formally replace p in
Hamiltonian by

p → p̂ = −i~
d

dx
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Example: simple harmonic oscillator.

Solution to Schrödinger equation requires restriction on the energy,

En = ~ω(n +
1

2
) n = 0, 1, 2 . . .

the position measurement probability amplitudes are then

ψn(x) = (2π∆)−1/2 (2nn!)−1/2 Hn

(

x

2
√

∆

)

e−
x2

4∆
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Quantisation of Sommerfeld-Epstein.

Area of the orbit is E .T

Sommerfeld’s rule: only those orbits are allowed for which the
action is an integer multiple of Planck’s constant. The allowed
energies are given by

En = nhf
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Example: simple harmonic oscillator.

Check some averages

Pn(x) = |ψn(x)|2

•
∫

∞

−∞
dx Pn(x) = 1

•
∫

∞

−∞
dx xPn(x) = 0

•
∫

∞

−∞
dx x2Pn(x) = ∆(2n + 1)

Prove these results!
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