MATH4104: Quantum nonlinear dynamics. Lecture Two. Review of quantum theory.

G J Milburn

The University of Queensland

S2, 2009

THE QUANTUM PRINCIPLE I.

The physical universe is irreducibly random.

THE QUANTUM PRINCIPLE I.

The physical universe is irreducibly random.

Given *complete* knowledge of the state of a physical system, there is at least one measurement the results of which are completely random.

(Contrast classical mechanics: Given complete knowledge of the state of a physical system, the results of all measurements are completely certain.)

THE QUANTUM PRINCIPLE II.

THE QUANTUM PRINCIPLE II.

Given *complete* knowledge of a physical state there is at least one measurement the results of which are certain.

THE QUANTUM PRINCIPLE II.

Given *complete* knowledge of a physical state there is at least one measurement the results of which are certain.

CERTAINTY WITHIN UNCERTAINTY.

The quantum theory enables us to calculate the probability for any measurement result.

The quantum theory enables us to calculate the probability for any measurement result.

But, we need a new mathematics of probability amplitudes.

The quantum theory enables us to calculate the probability for any measurement result.

But, we need a new mathematics of probability amplitudes.

A quantum state is a list of probability amplitudes for the measurement of a physical quantity, e.g momentum, energy...

The quantum theory enables us to calculate the probability for any measurement result.

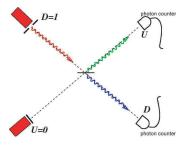
But, we need a new mathematics of probability amplitudes.

A quantum state is a list of probability amplitudes for the measurement of a physical quantity, e.g momentum, energy...

Given a list of probability amplitudes for one kind of measurement, we can generate the list for *all* physical measurements.

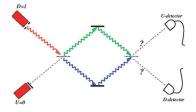
Photons at a beam splitter.

What happens if we use light of such low intensity that it has only one photon ?



The behaviour of any given photon is as random as a coin toss. The best we can do is give the odds (even in this case). This looks like a simple coin-toss.

'toss' the photon again:



After the first beam splitter we use two perfectly reflecting mirrors, one in the downward path and one in the upward path to direct the photon back onto another, identical, beam splitter. The photon counters are now moved back to monitor the beams after the second beam splitter.

What is the probability to detect a photon at, say, the upper detector, P(U)?

If the photon at a beam splitter really is a coin toss:

If the photon at a beam splitter really is a coin toss:

There are four possible *histories* for a photon: it can be reflected at the first beam-splitter and the second beam-splitter (RR), or it can be transmitted at both, (TT), or it be reflected at the first and transmitted at the second, (RT) or vice-versa (TR).

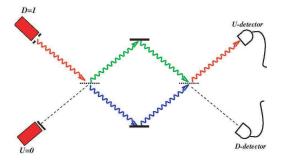
If the photon at a beam splitter really is a coin toss:

There are four possible *histories* for a photon: it can be reflected at the first beam-splitter and the second beam-splitter (RR), or it can be transmitted at both, (TT), or it be reflected at the first and transmitted at the second, (RT) or vice-versa (TR).

Each case is equally likely, so we assign a probability of 1/4 to each history, P(RR) = P(TT) = P(RT) = P(TR). Detection at U can be achieved in two ways: RR and TT. Bayes' rule,

$$P(U) = P(RR) + P(TT) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

When the experiment is done, the results are completely different: the photon is *always* detected at U. Detection at U is certain, so that P(U) = 1.



In this experiment we see how quantum systems can exhibit both irreducible uncertainty and certainty depending on how we interrogate the system.

Probabilities are not the primary object, rather we first need to assign a *probability amplitude*

Probabilities are not the primary object, rather we first need to assign a *probability amplitude*

. Feynman's rule (the quantum Bayes' rule):

if an event can happen in two (or more) indistinguishable ways, first add the probability amplitudes, then square to get the probability.

Either the photon is counted at the U-detector or it is counted at the D-detector.

Probabilities are not the primary object, rather we first need to assign a *probability amplitude*

. Feynman's rule (the quantum Bayes' rule):

if an event can happen in two (or more) indistinguishable ways, first add the probability amplitudes, then square to get the probability.

Either the photon is counted at the U-detector or it is counted at the D-detector.

The quantum state is then a list with just two (complex) elements, (t,r), such that $P(D)=|t|^2$ and $P(U)=|r|^2$. (Need $|r|^2+|t|^2=1$).

Probabilities are not the primary object, rather we first need to assign a *probability amplitude*

. Feynman's rule (the quantum Bayes' rule):

if an event can happen in two (or more) indistinguishable ways, first add the probability amplitudes, then square to get the probability.

Either the photon is counted at the U-detector or it is counted at the D-detector.

The quantum state is then a list with just two (complex) elements, (t, r), such that $P(D) = |t|^2$ and $P(U) = |r|^2$. (Need $|r|^2 + |t|^2 = 1$).

Refer to r as the probability amplitude for a photon to be reflected and t is the probability amplitude for the photon to be transmitted.

Here a quantum state is an ordered pair of probability amplitudes: first entry represents the amplitude for a photon to be counted in the D-direction and the second entry corresponds to a photon being counted in the U-direction.

Here a quantum state is an ordered pair of probability amplitudes: first entry represents the amplitude for a photon to be counted in the D-direction and the second entry corresponds to a photon being counted in the U-direction.

single photon input in the D-direction can be described by the quantum state (1,0). The beam splitter then transforms the state according to $(1,0) \to (t,r)$. In a self consistent way we could then describe the state of a photon input in the U direction as (0,1).

Here a quantum state is an ordered pair of probability amplitudes: first entry represents the amplitude for a photon to be counted in the D-direction and the second entry corresponds to a photon being counted in the U-direction.

single photon input in the D-direction can be described by the quantum state (1,0). The beam splitter then transforms the state according to $(1,0) \to (t,r)$. In a self consistent way we could then describe the state of a photon input in the U direction as (0,1).

Does,
$$(0,1) \to (r,t)$$
?

Here a quantum state is an ordered pair of probability amplitudes: first entry represents the amplitude for a photon to be counted in the D-direction and the second entry corresponds to a photon being counted in the U-direction.

single photon input in the D-direction can be described by the quantum state (1,0). The beam splitter then transforms the state according to $(1,0) \to (t,r)$. In a self consistent way we could then describe the state of a photon input in the U direction as (0,1).

Does,
$$(0,1) \to (r,t)$$
?

There is a problem with this in the case of a 50/50 beam splitter, which highlights an important physical principle which we pause to consider.

Time reversal invariance.

Time reversal invariance.

The two input states (0,1) and (1,0) are physically distinct and can't be mapped to the same quantum state for a 50/50 beam splitter.

Time reversal invariance.

The two input states (0,1) and (1,0) are physically distinct and can't be mapped to the same quantum state for a 50/50 beam splitter.

To fix use

$$(1,0) \rightarrow (t,r) \tag{1}$$

$$(0,1) \rightarrow (-r,t) \tag{2}$$

Time reversal invariance.

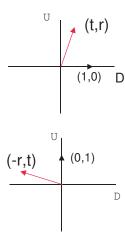
The two input states (0,1) and (1,0) are physically distinct and can't be mapped to the same quantum state for a 50/50 beam splitter.

To fix use

$$(1,0) \rightarrow (t,r) \tag{1}$$

$$(0,1) \rightarrow (-r,t) \tag{2}$$

the probability of transmission and reflection, which are equal to t^2 and r^2 are the same for D and U input states.



A note on Dirac notation.

A note on Dirac notation.

A photon is definitely in the D state, (1,0) or the U state (0,1). We will think of these as *basis vectors*.

A note on Dirac notation.

A photon is definitely in the D state, (1,0) or the U state (0,1). We will think of these as *basis vectors*.

A general state:
$$(t, r) = t(1, 0) + r(0, 1)$$

A note on Dirac notation.

A photon is definitely in the D state, (1,0) or the U state (0,1). We will think of these as *basis vectors*.

A general state:
$$(t, r) = t(1, 0) + r(0, 1)$$

Dirac: write
$$(1,0)=|D\rangle$$
 and $(0,1)=|U\rangle$

A note on Dirac notation.

A photon is definitely in the D state, (1,0) or the U state (0,1). We will think of these as *basis vectors*.

A general state:
$$(t,r) = t(1,0) + r(0,1)$$

Dirac: write
$$(1,0) = |D\rangle$$
 and $(0,1) = |U\rangle$

A general state is then $|\psi\rangle = t|D\rangle + r|U\rangle$.

Quantum mechanics with particles.

A free particle is one that is not acted on by a force. In one dimension Newtonian physics gives the position as a function of time as

$$x(t) = x_0 + p_0 t/m$$

where x_0 , p_0 are initial position and momentum.

The kinetic energy, depends only on momentum

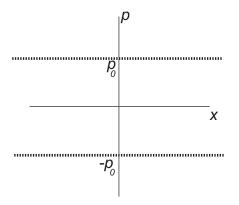
$$E=\frac{p_0^2}{2m}$$

is a constant of the motion

Note: $\pm p_0$ have the same energy.

Quantum mechanics with particles.

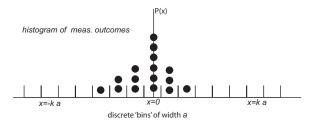
A phase-space picture for free particles of definite energy, *E*. A *distribution* of states, all with the same energy,



Note, the position distribution is uniform.

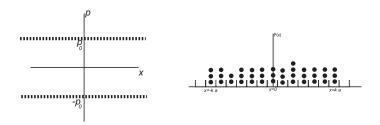
Quantum mechanics with particles.

How to describe position measurements?

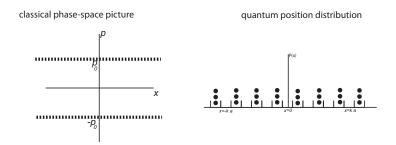


Plot a histograms of number of measurement results that lie in k-th bin.

Classical position distribution for states of definite energy.



The distribution is uniform (within experimental sampling error).



The distribution is oscillatory.

There are some bins where the particle is *never* seen.

Explanation: there are *two* indistinguishable ways to find a particle with definite energy at the k-th bin:

- in k and travelling with positive momentum and
- in k and travelling with negative momentum.

Explanation: there are *two* indistinguishable ways to find a particle with definite energy at the k-th bin:

- in k and travelling with positive momentum and
- in k and travelling with negative momentum.

$$\mathcal{A}(k) = \mathcal{A}(k:+p_0) + \mathcal{A}(k:-p_0)$$

Explanation: there are *two* indistinguishable ways to find a particle with definite energy at the k-th bin:

- in k and travelling with positive momentum and
- in *k* and travelling with negative momentum.

$$\mathcal{A}(k) = \mathcal{A}(k:+p_0) + \mathcal{A}(k:-p_0)$$

$$P(k) = |\mathcal{A}(k:+p_0) + \mathcal{A}(k:-p_0)|^2$$

= $|\mathcal{A}(k:+p_0)|^2 + |\mathcal{A}(k:-p_0)|^2 + 2\text{Re}\left[\mathcal{A}(k:+p_0)\mathcal{A}(k:-p_0)^*\right]$

Explanation: there are *two* indistinguishable ways to find a particle with definite energy at the k-th bin:

- in k and travelling with positive momentum and
- in k and travelling with negative momentum.

$$\mathcal{A}(k) = \mathcal{A}(k:+p_0) + \mathcal{A}(k:-p_0)$$

$$P(k) = |\mathcal{A}(k:+p_0) + \mathcal{A}(k:-p_0)|^2$$

= $|\mathcal{A}(k:+p_0)|^2 + |\mathcal{A}(k:-p_0)|^2 + 2\text{Re}\left[\mathcal{A}(k:+p_0)\mathcal{A}(k:-p_0)^*\right]$

The last term is not always positive, so can cancel the first two terms... interference.

How to assign the amplitudes — Schrödinger!

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

$$\mathcal{A}(n:+p_0) = \frac{1}{\sqrt{N}} e^{-2\pi i n a p_0/h}$$

N is total number of bins and h is Planck's constant.

Note: ap_0 has units of action.

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

$$\mathcal{A}(n:+p_0) = \frac{1}{\sqrt{N}}e^{-2\pi i n a p_0/h}$$

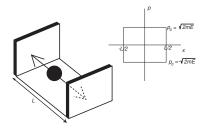
N is total number of bins and h is Planck's constant.

Note: ap_0 has units of action.

In continuum limit: $na \rightarrow x$

$$\mathcal{A}(x:+p_0)=\frac{1}{\sqrt{N}}e^{-ixp_0/\hbar}$$

An oscillator, but period depends on energy and motion is not harmonic.

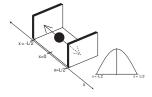


The period,

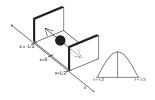
$$T(E) = \frac{2mL}{p} = L\sqrt{\frac{2m}{E}}$$

The area is given by $2L\sqrt{2mE}$,

$$E_n = \frac{n^2 h^2}{8mL^2}$$



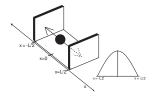
Probability to find particle outside the box is zero.



Probability to find particle outside the box is zero.

Probability to find particle at $x = \pm L/2$ is zero.

$$P(x=\pm L/2)=0$$

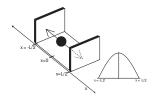


Probability to find particle outside the box is zero.

Probability to find particle at $x = \pm L/2$ is zero.

$$P(x=\pm L/2)=0$$

The smallest value of p_0 is not zero, $(p_0)_{min} = \frac{h}{2L}$



Probability to find particle outside the box is zero.

Probability to find particle at $x = \pm L/2$ is zero.

$$P(x = \pm L/2) = 0$$

The smallest value of p_0 is not zero, $(p_0)_{min} = \frac{h}{2L}$

The minimum allowed energy is $E_{min} = \frac{1}{2m} (p_0)_{min}^2 = \frac{h^2}{8mL^2}$

Simple harmonic oscillator: period is independent of energy.

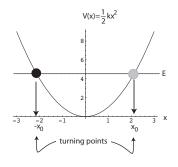
$$x(t) = x_0 \cos(2\pi t/T)$$

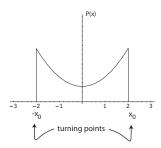
where T is the period of the motion.

Surfaces of constant energy:

$$E = \frac{p^2}{2m} + \frac{k}{2}x^2 \tag{3}$$

Classical position prob. distribution for a state of definite energy.





Quantum SHO.

Fix energy, then

$$p(x) = \sqrt{2m\left(E - \frac{m\omega^2 x^2}{2}\right)}$$

The momentum is *not fixed*.

Schorödinger equation is required.

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi(x) + \frac{m\omega^{2}}{2}x^{2}\psi(x) = E\psi(x)$$

In the form $\hat{H}\psi(x)=E\psi(x)$ where formally replace p in Hamiltonian by

$$p \to \hat{p} = -i\hbar \frac{d}{dx}$$

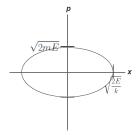
Solution to Schrödinger equation requires restriction on the energy,

$$E_n = \hbar\omega(n + \frac{1}{2})$$
 $n = 0, 1, 2...$

the position measurement probability amplitudes are then

$$\psi_n(x) = (2\pi\Delta)^{-1/2} (2^n n!)^{-1/2} H_n\left(\frac{x}{2\sqrt{\Delta}}\right) e^{-\frac{x^2}{4\Delta}}$$

Quantisation of Sommerfeld-Epstein.



Area of the orbit is E.T

<u>Sommerfeld's rule:</u> only those orbits are allowed for which the action is an integer multiple of Planck's constant. The allowed energies are given by

$$E_n = nhf$$

Check some averages

$$P_n(x) = |\psi_n(x)|^2$$

- $\int_{-\infty}^{\infty} dx \ P_n(x) = 1$
- $\int_{-\infty}^{\infty} dx \ x P_n(x) = 0$
- $\int_{-\infty}^{\infty} dx \ x^2 P_n(x) = \Delta(2n+1)$

Prove these results!