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Lecture three: A simple introduction to quantum theory.

Quantum mechanics with particles.

A free particle is one that is not acted on by a force. In one
dimension Newtonian physics gives the position as a function of
time as

x(t) = x0 + p0t/m

where x0, p0 are initial position and momentum.

The kinetic energy, depends only on momentum

E =
p2
0

2m

is a constant of the motion

Note: ±p0 have the same energy.
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Quantum mechanics with particles.

A phase-space picture for free particles of definite energy, E .
A distribution of states, all with the same energy,
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Note, the position distribution is uniform.
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Quantum mechanics with particles.

How to describe position measurements?

P(x)

x=0 x=k a

discrete ‘bins’ of width a

x=-k a

histogram of  meas. outcomes

Plot a histograms of number of measurement results that lie in
k-th bin.

Can make bin size — a — arbitrarily small.
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Classical position distribution for states of definite energy.
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P(x)

x=0 x=k ax=-k a

The distribution is uniform (within experimental sampling error).
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Quantum position distribution for states of definite energy.
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P(x)

x=0 x=k ax=-k a

classical phase-space picture quantum position distribution

The distribution is oscillatory.
There are some bins where the particle is never seen.
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Explanation: there are two indistinguishable ways to find a particle
with definite energy at the k−th bin:

• in k and travelling with positive momentum and

• in k and travelling with negative momentum.
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with definite energy at the k−th bin:

• in k and travelling with positive momentum and

• in k and travelling with negative momentum.
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Quantum position distribution for states of definite energy.

Explanation: there are two indistinguishable ways to find a particle
with definite energy at the k−th bin:

• in k and travelling with positive momentum and

• in k and travelling with negative momentum.

A(k) = A(k : +p0) + A(k : −p0)

P(k) = |A(k : +p0) + A(k : −p0)|2

= |A(k : +p0)|2 + |A(k : −p0)|2 + 2Re [A(k : +p0)A(k : −p0)
∗]

The last term is not always positive, so can cancel the first two
terms... interference.



Lecture three: A simple introduction to quantum theory.

Quantum position distribution for states of definite energy.

How to assign the amplitudes — Schrödinger!



Lecture three: A simple introduction to quantum theory.

Quantum position distribution for states of definite energy.

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase



Lecture three: A simple introduction to quantum theory.

Quantum position distribution for states of definite energy.

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

A(n : +p0) =
1√
N

e−2πinap0/h

N is total number of bins and h is Planck’s constant.

Note: ap0 has units of action.
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Quantum position distribution for states of definite energy.

How to assign the amplitudes — Schrödinger!

Need uniform amplitude but varying phase

A(n : +p0) =
1√
N

e−2πinap0/h

N is total number of bins and h is Planck’s constant.

Note: ap0 has units of action.

In continuum limit: na → x

A(x : +p0) =
1√
N

e−ixp0/~

~ = h/2π
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Quantum position distribution for states of definite

momentum

Schrödinger’s method for finding the position probability amplitude
for states of definite momentum.

Take the classical phase space function, f (x , p), representing the
physical quantity of interest, in this case f (x , p) = p.

Replace p by a differential operator

p → p̂ = −i~
d

dx

The solve the eigenvalue problem:
(

−i~
d

dx

)

ψ(x) = pψ(x)

In this case: ψ(x) ∝ e−ixp/~
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Example: particle in a box.

An oscillator, but period depends on energy and motion is not
harmonic.

L

x

p

 

p  =    2mE
0

L/2-L/2

 

p  =    2mE
0

-

The period,

T (E ) =
2mL

p
= L

√

2m

E

The area is given by 2L
√

2mE ,

En =
n2h2

8mL2
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x

x=L

x =  0

x =  0 x =  L

Probability to find particle outside the box is zero.

Probability to find particle at x = 0,L is zero.

P(x = 0) = P(x = L) = 0

The smallest value of p0 is not zero, (p0)min = h
2L
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Example: particle in a box.

x

x=L

x =  0

x =  0 x =  L

Probability to find particle outside the box is zero.

Probability to find particle at x = 0,L is zero.

P(x = 0) = P(x = L) = 0

The smallest value of p0 is not zero, (p0)min = h
2L

The minimum allowed energy is Emin = 1
2m

(p0)
2
min = h2

8mL2
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Example: particle in a box.

In general, the allowed momenta are: ±nh
2L

.

and allowed energies

En =
n2h2

8mL2
=

n2
~

2π2

2mL2

and corresponding position probability amplitudes are

un(x) =

√

2

L
sin

(nπx

L

)
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Example: simple harmonic oscillator.

Simple harmonic oscillator: period is independent of energy.

x(t) = x0 cos(2πt/T )

where T is the period of the motion.

Surfaces of constant energy:

E =
p2

2m
+

k

2
x2 (1)
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Example: simple harmonic oscillator.

Classical position prob. distribution for a state of definite energy.
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Example: simple harmonic oscillator.

Quantum SHO.
Fix energy, then

p(x) =

√

2m

(

E − mω2x2

2

)

The momentum is not fixed.

Schorödinger equation is required.

− ~
2

2m

d2

dx2
ψ(x) +

mω2

2
x2ψ(x) = Eψ(x)

In the form Ĥψ(x) = Eψ(x) where formally replace p in
Hamiltonian by

p → p̂ = −i~
d

dx
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Example: simple harmonic oscillator.

Solution to Schrödinger equation requires restriction on the energy,

En = ~ω(n +
1

2
) n = 0, 1, 2 . . .

the position measurement probability amplitudes are then

ψn(x) = (2π∆)−1/4 (2nn!)−1/2
Hn

(

x√
2∆

)

e−
x2

4∆
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Quantisation of Sommerfeld-Epstein.

Area of the orbit is E .T

Sommerfeld’s rule: only those orbits are allowed for which the
action is an integer multiple of Planck’s constant. The allowed
energies are given by

En = nhf
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Example: simple harmonic oscillator.

Check some averages

Pn(x) = |ψn(x)|2

•
∫

∞

−∞
dx Pn(x) = 1

•
∫

∞

−∞
dx xPn(x) = 0

•
∫

∞

−∞
dx x2Pn(x) = ∆(2n + 1)

Prove these results!
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Probability for momentum measurements.

The position prob. amp. state of definite momentum is

up(x) ∝ e−ip0x/~

Consider a general state, with position prob. amp. ψ(x)

If find a particle between x and x + dx , we have no knowledge of
its momentum

By Feynman’s rule, we need to sum over all states of definite
momentum which correspond to finding the particle between x and
x + dx :

ψ(x) =
1√
2π~

∫

∞

−∞

dp φ(p)e−ixp/~
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Probability for momentum measurements.

ψ(x) =
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−∞

dp φ(p)e−ixp/~

is just a Fourier transform
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Probability for momentum measurements.

ψ(x) =
1√
2π~

∫

∞

−∞

dp φ(p)e−ixp/~

is just a Fourier transform

Invert to get the probability amplitudes for momentum

φ(p) =
1√
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Probability for momentum measurements.

ψ(x) =
1√
2π~

∫

∞

−∞

dp φ(p)e−ixp/~

is just a Fourier transform

Invert to get the probability amplitudes for momentum

φ(p) =
1√
2π~

∫

∞

−∞

dp ψ(x)e ixp/~

Momentum probability density is: P(p) = |φ(p)|2.
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