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Lecture Four: Quantum dynamics

Schrödinger dynamics.

Let ψE (x) be the position probability amplitude for a state of a
mechanical system with definite energy E prepared at the initial
time t = 0

The state at later times t > 0 is then given by the dynamical

Schrödinger rule:

ψE (x , t) = ψE (x)e−iEt/~

Note that the position probability density

P(x , t = 0) = P(x , t)

is stationary. States of definite energy are called stationary states
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Schrödinger dynamics.

Let ψ(x , t = 0) be an arbitrary quantum state of a mechanical
system. How do we find the state at later times?

If we only measure the position of a particle, we have no
information about its energy. Thus the probability amplitude to
find a particle between x and x + dx must be the sum of all the
position probability amplitudes to find the particle at that point
with definite energy Ei . By Feynman’s rule:

ψ(x , t = 0) =
∑

E

c(E )ψE (x)

The state at later times t > 0 are then give by

ψ(x , t = 0) =
∑

E

c(E )ψE (x)e−iEt/~
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Schrödinger dynamics.

Suppose we measure the energy instead of the position for the
state ψ(x). What is the probability to get the result E

ψ(x , t = 0) =
∑

E

c(E )ψE (x)

The probability amplitude to get the result E is just c(E ), so the
probability is

P(E ) = |C (E )|2

Note that this does not change in time — a reflection of
conservation of energy.
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Schrödinger dynamics: square well.
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The square well is a nonlinear oscillator because the period
depends on the energy.

The allowed energies are

En =
~

2π2

2mL2
n2, n = 1, 2, 3, . . .

and corresponding states of definite energy are

un(x) =

√

2

L
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(nπx

L

)
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Schrödinger dynamics: square well.

Consider the initial state:

ψ(x , 0) =

√

256

126

√

2

L
(sin (πx/L))5

Exercise: verify that this state is normalised

We note that: sin5θ = 5
8 sin θ − 5

16 sin 3θ + 1
16 sin 5θ

Thus,

ψ(x , 0) =

√

256

126

[

5

8
u1(x) − 5

16
u3(x) +

1

16
u5(x)

]
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Schrödinger dynamics: square well.

Apply Schrödinger’s dynammical rule:

ψ(x , t) =

√

256

126

[

5

8
u1(x)e−iω1t − 5

16
u3(x)e−iω3t +

1

16
u5(x)e−iω5t

]

where ωn = En/~.

Define a dimnesionless time: ω1t = τ

ψ(x , t) =

√

256

126

[

5

8
u1(x)e−iτ − 5

16
u3(x)e−9iτ +

1

16
u5(x)e−25iτ

]

Prove that this state is periodic and find the period



Lecture Four: Quantum dynamics

Schrödinger dynamics: simple harmonic oscillator.

Consider the initial state

ψ(x , t = 0) = (2π∆)−1/4e−(x−a)2/4∆

The initial mean and variance of position 〈x〉 = a, Var(x) = ∆.
To find the state at time t > 0 we need to expand

ψ(x , t = 0) =
∞

∑

n=0

cnun(x)

where

un(x) = (2π∆)−1/4 (2nn!)−1/2 Hn

(

x√
2∆

)

e−
x2

4∆

with corresponding energies

En = ~ω(n + 1/2) n = 0, 1, . . .
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Schrödinger dynamics: simple harmonic oscillator.

Useful identity:

e2zy−z2
=

∞
∑

n=0

Hn(y)
zn

n!

Thus

ψ(x , t = 0) = (2π∆)−1/4
∞
∑

n=0

(2nn!)−1/2Hn

(

x√
2∆

)

e−x2/4∆

×(2nn!)1/2

(

a

2
√

2∆

)n 1

n!
e−a2/8∆

=

∞
∑

n=0

(a/2
√

∆)n√
n!

e−a2/8∆ un(x)

where

cn =
(a/2

√
∆)n√

n!
e−a2/8∆
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Schrödinger dynamics: simple harmonic oscillator.

The probability to get result En if we measure energy on this state
is

Pn =
(a2/4∆)n

n!
e−a2/4∆ =

n̄

n!
e−n̄

where

n̄ =
a2

4∆

Prove that the average energy is

〈E 〉 = ~ω(n̄ + 1/2) = mω2a2/2 + ~ω/2
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Schrödinger dynamics: simple harmonic oscillator.

The initial state

ψ(x , t = 0) = (2π∆)−1/4e−(x−a)2/4∆

thus evolves to

ψ(x , t) = e−iωt/2
∞
∑

n=0

cnun(x)e−iωnt

cn =
(a/2

√
∆)n√

n!
e−a2/8∆

1. Prove that the state is periodic.

2. Prove that the average position as a function of time is

〈x(t)〉 = a cosωt
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