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Lecture Four: Quantum dynamics

Schrodinger dynamics.

Let ¢£(x) be the position probability amplitude for a state of a
mechanical system with definite energy E prepared at the initial
time t =0

The state at later times t > 0 is then given by the dynamical
Schrodinger rule:

VE(x, t) = Pe(x)e E/R

Note that the position probability density
P(x,t =0) = P(x,t)

is stationary. States of definite energy are called stationary states
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Schrodinger dynamics.

Let ¢(x,t = 0) be an arbitrary quantum state of a mechanical
system. How do we find the state at later times?

If we only measure the position of a particle, we have no
information about its energy. Thus the probability amplitude to
find a particle between x and x + dx must be the sum of all the
position probability amplitudes to find the particle at that point
with definite energy E;. By Feynman’s rule:

U(x,t=0) = c(E)e(x)

E

The state at later times t > 0 are then give by

P(x, t=0) = Z C(E)¢E(X)e—iEt/n

E
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Schrodinger dynamics.

Suppose we measure the energy instead of the position for the
state ¥(x). What is the probability to get the result E

P(x,t=0)=>_ c(E)e(x)

E

The probability amplitude to get the result E is just ¢(E), so the
probability is
P(E) =|C(E)?

Note that this does not change in time — a reflection of
conservation of energy.
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Schrodinger dynamics: square well.
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The square well is a nonlinear oscillator because the period
depends on the energy.

The allowed energies are
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=——=n

2ml2 "’

and corresponding states of definite energy are

o9 = 15 (°F)

E, n=1273, ...
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Schrodinger dynamics: square well.

Consider the initial state:

¥(x,0) = ,/%\E(sin (nx/1))°

Exercise: verify that this state is normalised

We note that: sin®0 = %sin 0 — % sin 30 + % sin 50

Thus,

0x.0) = 2o | 2un) — ) + g ()
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Schrodinger dynamics: square well.
Apply Schrodinger’'s dynammical rule:

_ [256 [5 it 5 —iwgt | 1 —iwst
¢(X, t) — ﬁ |:§u1(x)e 16U3(X)e + 16U5(X)e

where w, = E, /h.

Define a dimnesionless time: wit = 7

. 5 . 1 .
Bx,t) = /22 [Zun(x)e ™ — Zus(x)e % + —ug(x)e 2"

256 5
126 |8 16

Prove that this state is periodic and find the period
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Schrodinger dynamics: simple harmonic oscillator.

Consider the initial state
P(x, t = 0) = (2rA) V4~ /an

The initial mean and variance of position (x) = a, Var(x) = A.
To find the state at time t > 0 we need to expand

(x,t=0)= Zc,,u,,

where

un(x) = (2rA) Y4 (20 p1) Y/ X e—é
J(x) = (2rA) 4 (2 !)”Hn(m>

with corresponding energies

En=hw(n+1/2) n=0,1,...
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Schrodinger dynamics: simple harmonic oscillator.

Useful identity:

22y 22 ZH

Y(x,t=0) = (2rA)~ 1/42 (2"n)"/2H, (

> e—X2/4A

l —a?/8A
n!

n

(2nn| 1/2 <2m
_ i 3/2\/_ —a2/8A u,,(x)
n=0 '

where
c — (a/2vA)" o—37/8A
n \/m
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Schrodinger dynamics: simple harmonic oscillator.

The probability to get result E, if we measure energy on this state

is
p_ (2/40)" N
ne n! ol
where
Aol
4N

Prove that the average energy is
(E) = hw(h +1/2) = mw?a®/2 + hw/2



Lecture Four: Quantum dynamics

Schrodinger dynamics: simple harmonic oscillator.

The initial state

thus evolves to
. ©© .
1/}()(7 t) — e—lwt/2 Z C,,U,,(X)e_’wnt
n=0

(3/2\/5)" o 3/8A

Ch = \/m

1. Prove that the state is periodic.

2. Prove that the average position as a function of time is
(x(t)) = acoswt
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