MATH4104: Quantum nonlinear dynamics. Lecture Four. Review of quantum theory: quantum dynamics.

G J Milburn

The University of Queensland

S2, 2009

Schrödinger dynamics.

Let $\psi_E(x)$ be the position probability amplitude for a state of a mechanical system with definite energy E prepared at the initial time t=0

The state at later times t > 0 is then given by the *dynamical* Schrödinger rule:

$$\psi_E(x,t) = \psi_E(x)e^{-iEt/\hbar}$$

Note that the position probability density

$$P(x, t = 0) = P(x, t)$$

is stationary. States of definite energy are called stationary states

Schrödinger dynamics.

Let $\psi(x, t = 0)$ be an *arbitrary* quantum state of a mechanical system. How do we find the state at later times?

If we only measure the position of a particle, we have no information about its energy. Thus the probability amplitude to find a particle between x and x+dx must be the sum of all the position probability amplitudes to find the particle at that point with definite energy E_i . By Feynman's rule:

$$\psi(x,t=0) = \sum_{E} c(E)\psi_{E}(x)$$

The state at later times t > 0 are then give by

$$\psi(x, t = 0) = \sum_{E} c(E) \psi_{E}(x) e^{-iEt/\hbar}$$

Schrödinger dynamics.

Suppose we measure the energy instead of the position for the state $\psi(x)$. What is the probability to get the result E

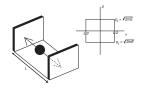
$$\psi(x,t=0) = \sum_{E} c(E)\psi_{E}(x)$$

The probability amplitude to get the result E is just c(E), so the probability is

$$P(E) = |C(E)|^2$$

Note that this does not change in time — a reflection of conservation of energy.

Schrödinger dynamics: square well.



The square well is a nonlinear oscillator because the period depends on the energy.

The allowed energies are

$$E_n = \frac{\hbar^2 \pi^2}{2mL^2} n^2, \qquad n = 1, 2, 3, \dots$$

and corresponding states of definite energy are

$$u_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

Schrödinger dynamics: square well.

Consider the initial state:

$$\psi(x,0) = \sqrt{\frac{256}{126}} \sqrt{\frac{2}{L}} \left(\sin \left(\pi x/L \right) \right)^5$$

Exercise: verify that this state is normalised

We note that: $sin^5\theta=\frac{5}{8}\sin\theta-\frac{5}{16}\sin3\theta+\frac{1}{16}\sin5\theta$

Thus,

$$\psi(x,0) = \sqrt{\frac{256}{126}} \left[\frac{5}{8} u_1(x) - \frac{5}{16} u_3(x) + \frac{1}{16} u_5(x) \right]$$

Schrödinger dynamics: square well.

Apply Schrödinger's dynammical rule:

$$\psi(x,t) = \sqrt{\frac{256}{126}} \left[\frac{5}{8} u_1(x) e^{-i\omega_1 t} - \frac{5}{16} u_3(x) e^{-i\omega_3 t} + \frac{1}{16} u_5(x) e^{-i\omega_5 t} \right]$$

where $\omega_n = E_n/\hbar$.

Define a dimnesionless time: $\omega_1 t = \tau$

$$\psi(x,t) = \sqrt{\frac{256}{126}} \left[\frac{5}{8} u_1(x) e^{-i\tau} - \frac{5}{16} u_3(x) e^{-9i\tau} + \frac{1}{16} u_5(x) e^{-25i\tau} \right]$$

Prove that this state is periodic and find the period

Consider the initial state

$$\psi(x, t = 0) = (2\pi\Delta)^{-1/4}e^{-(x-a)^2/4\Delta}$$

The initial mean and variance of position $\langle x \rangle = a$, $\mathrm{Var}(x) = \Delta$. To find the state at time t > 0 we need to expand

$$\psi(x, t = 0) = \sum_{n=0}^{\infty} c_n u_n(x)$$

where

$$u_n(x) = (2\pi\Delta)^{-1/4} (2^n n!)^{-1/2} H_n\left(\frac{x}{\sqrt{2\Delta}}\right) e^{-\frac{x^2}{4\Delta}}$$

with corresponding energies

$$E_n = \hbar \omega (n + 1/2)$$
 $n = 0, 1, ...$

Useful identity:

$$e^{2zy-z^2} = \sum_{n=0}^{\infty} H_n(y) \frac{z^n}{n!}$$

Thus

$$\psi(x, t = 0) = (2\pi\Delta)^{-1/4} \sum_{n=0}^{\infty} (2^n n!)^{-1/2} H_n\left(\frac{x}{\sqrt{2\Delta}}\right) e^{-x^2/4\Delta}$$
$$\times (2^n n!)^{1/2} \left(\frac{a}{2\sqrt{2\Delta}}\right)^n \frac{1}{n!} e^{-a^2/8\Delta}$$
$$= \sum_{n=0}^{\infty} \frac{(a/2\sqrt{\Delta})^n}{\sqrt{n!}} e^{-a^2/8\Delta} u_n(x)$$

where

$$c_n = \frac{(a/2\sqrt{\Delta})^n}{\sqrt{n!}}e^{-a^2/8\Delta}$$

The probability to get result E_n if we measure energy on this state is

$$P_n = \frac{(a^2/4\Delta)^n}{n!} e^{-a^2/4\Delta} = \frac{\bar{n}}{n!} e^{-\bar{n}}$$

where

$$\bar{n} = \frac{a^2}{4\Delta}$$

Prove that the average energy is

$$\langle E \rangle = \hbar \omega (\bar{n} + 1/2) = m\omega^2 a^2/2 + \hbar \omega/2$$

The initial state

$$\psi(x, t = 0) = (2\pi\Delta)^{-1/4}e^{-(x-a)^2/4\Delta}$$

thus evolves to

$$\psi(x,t) = e^{-i\omega t/2} \sum_{n=0}^{\infty} c_n u_n(x) e^{-i\omega nt}$$

$$c_n = \frac{(a/2\sqrt{\Delta})^n}{\sqrt{n!}} e^{-a^2/8\Delta}$$

- 1. Prove that the state is periodic.
- 2. Prove that the average position as a function of time is $\langle x(t) \rangle = a \cos \omega t$