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Dirac notation Operators

The simple harmonic oscillator.

Allowed energies

En = ~ω(n + 1/2) n = 0, 1, . . .

Energy eigenstates:

un(x) = (2π∆)−1/4 (2nn!)−1/2
Hn

(

x√
2∆

)

e−
x2

4∆

Arbitrary state ψ(x):

ψ(x) =

∞
∑

n=0

cnun(x)

where

cn =

∫ ∞

−∞
dx u∗

n(x)ψ(x)
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The simple harmonic oscillator.

Alternative notation — a list of probability amplitudes for energy
measurements

ψ = (c0, c1, c2, . . .) = c0(1, 0, 0, . . .) + c2(0, 1, 0, . . .) + . . .

Dirac notation

|ψ〉 =
∞
∑

n=0

cn|n〉; |φ〉 =
∞
∑

n=0

dn|n〉

Define an inner product for two arbitrary states |ψ〉, |φ〉

〈φ|ψ〉 =

∞
∑

n=0

d∗
ncn

prove that this is also given by

〈φ|ψ〉 =

∫ ∞

−∞
dx φ∗(x)ψ(x)
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The simple harmonic oscillator.

Average position

〈x〉 =

∫ ∞

−∞
dxψ∗(x) x ψ(x) ≡ 〈ψ|x |ψ〉

Average momentum?

〈p〉 = 〈ψ|x |ψ〉 =

∫ ∞

−∞
dxψ∗(x)

(

−i~
d

dx

)

ψ(x)

Recall, expansion over states of definite momentum,

ψ(x) =
1√
2π~

∫

∞

−∞

dx e−ipx/~ψ̃(p)

Substitute this and show that

〈p〉 =

∫

∞

−∞

dpp|ψ̃(p)|2

Where we interpret P(p) = |ψ̃(p)|2 as the momentum prob. density.
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The simple harmonic oscillator.

Example: let the state be an energy eigenstate

un(x) = (2π∆)−1/4 (2nn!)−1/2
Hn

(

x√
2∆

)

e−
x2

4∆

Find 〈p〉, 〈p2〉.

Use:

d

dx
Hn(x) = 2nHn−1(x)

Hn+1(x) = 2xHn(x) − 2nHn−1(x)

to show
(

−i~
d

dx

)

un(x) =
i~√
4∆

[

(n + 1)1/2un+1(x) − n1/2un−1(x)
]

Prove this!
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The simple harmonic oscillator.

Thus momentum averages in an energy eigenstate are:

〈n|p|n〉 = 0

〈n|p2|n〉 =
~

2

4∆
(2n + 1)

Prove these results!

Recall position averages, 〈n|x |n〉 = 0 and 〈n|x2|n〉 = ∆(2n + 1)
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The simple harmonic oscillator.

Projection operators.

Recall that an arbitrary state in energy basis is

|ψ〉 = (c0, c1, c2, . . .) = c0(1, 0, 0, . . .) + c2(0, 1, 0, . . .) + . . .

Project in the n’th basis direction:

ψ → (0, 0, . . . , 0, cn, 0, . . .) = cn|n〉

We can write this as
ψ → |n〉〈n|ψ〉

Define the projection operator

Πn = |n〉〈n|
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The simple harmonic oscillator.

Measurement of a projection operator.

Given the state |ψ〉, what is the average value of Πn?

〈ψ|Πn|ψ〉 = 〈ψ|n〉〈n|ψ〉
= |〈n|ψ〉|2

= |cn|2

The average of the projection operator is a probability.
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Operator representation∗

Define

Ĥ =
∞
∑

n=0

EnΠn

The the average energy for state |ψ〉 is given by

〈E 〉 = 〈ψ|Ĥ |ψ〉

∗ This is called the spectral decomposition
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Raising and lowering operators.

Raising and lowering operators.

Define two new operators a, a† by their action on energy
eigenstates

a|n〉 = n1/2|n − 1〉
a†|n〉 = (n + 1)1/2|n + 1〉

with a|0〉 = 0.
Prove that:

Ĥ = ~ω(a†a + 1/2)

q̂ =
√

∆(a + a†)

p̂ = −i
~

2
√

∆
(a − a†)

are the operators for energy, position and momentum

respectively.
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Canonical commutation relations..

Let ψ(x) be an arbitrary state in position representation.

q̂p̂|ψ〉 → x

(

−i~
d

dx

)

ψ(x)

p̂q̂|ψ〉 →
(

−i~
d

dx

)

xψ(x)

= −i~ψ(x) + x

(

−i~
d

dx

)

ψ(x)

Thus
(q̂p̂ − p̂x̂)ψ = i~|ψ〉

Define the canonical commutation relation

[q̂, p̂] = (q̂p̂ − p̂x̂) = i~

Now show that

[a, a†] = 1.
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Canonical commutation relations.

We can show that the state |ψ0〉 with position prob. amp.

ψ0(x) = 〈x |ψ0〉 ∝ exp(−x2/4∆)

is an eigenstate of a with eigenvalue 0.

Show this using the position representation of p̂ as −i~ ∂
∂x

.

It is eigenstate of the Hamiltonian with eigenvalue ~ω/2, the
lowest eigenvalue of the Hamiltonian.

The ground state of the SHO is a minimum uncertainty state with
〈q̂〉 = 〈p̂〉 = 0 and a characteristic length given by

√
∆ =

√

~/2mω
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Oscillator coherent states.

This state is defined as an eigenstate of the annihilation operator

a|α〉 = α|α〉 (1)

where α is a complex number (because â is not an Hermitian
operator).

There are no such eigenstates of the creation operator a†.

Show this. Assume that there exists states |β〉 such that

a†|β〉 = β|β〉 and consider the inner product 〈n|(a†)n+1|β〉.
Hence show that the inner product of |β〉 with any number

state is zero.
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Oscillator coherent states.

Expansion in energy eigenstates:

|α〉 =
∞

∑

n=0

cn|n〉.
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Oscillator coherent states.

Expansion in energy eigenstates:

|α〉 =
∞

∑

n=0

cn|n〉.

Since a|α〉 = α|α〉 we get

∞
∑

n=0

√
ncn|n − 1〉 =

∞
∑

n=0

αcn|n〉.
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Oscillator coherent states.

Expansion in energy eigenstates:

|α〉 =
∞

∑

n=0

cn|n〉.

Since a|α〉 = α|α〉 we get

∞
∑

n=0

√
ncn|n − 1〉 =

∞
∑

n=0

αcn|n〉.

Equating the coefficients

cn+1 =
α√

n + 1
cn.
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Oscillator coherent states.

Expansion in energy eigenstates:

|α〉 =
∞

∑

n=0

cn|n〉.

Since a|α〉 = α|α〉 we get

∞
∑

n=0

√
ncn|n − 1〉 =

∞
∑

n=0

αcn|n〉.

Equating the coefficients

cn+1 =
α√

n + 1
cn.

so that cn = αn√
n!

c0. Choosing c0 real and normalizing the state,

|α〉 = exp
(

−|α|2/2
)

∑

n

αn

√
n!
|n〉.
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Oscillator coherent states.

Average energy

~ω〈α|â†â|α〉 = ~ωα∗〈α|α〉α = ~ω|α|2.
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Oscillator coherent states.

Average energy

~ω〈α|â†â|α〉 = ~ωα∗〈α|α〉α = ~ω|α|2.

The energy probability distribution for a coherent state is

Pn = |〈n|α〉|2 = e−|α|2
(

|α|2
)n

n!
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Oscillator coherent states.

Average energy

~ω〈α|â†â|α〉 = ~ωα∗〈α|α〉α = ~ω|α|2.

The energy probability distribution for a coherent state is

Pn = |〈n|α〉|2 = e−|α|2
(

|α|2
)n

n!

a Poisson distribution, with variance equal to the mean,

〈

(a†a)2
〉

−
〈

a†a
〉2

= |α|2

Verify this, either from the distribution, Pn, or directly from

the coherent state using the commutation relations for a and

a†.
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Oscillator coherent states.

Now show that,

〈α|q̂|α〉 = 2
√

∆ Re[α]

〈α|p̂|α〉 =
√

~/∆ Im[α]

〈α|(∆q̂)2|α〉 = ∆

〈α|(∆p̂)2|α〉 = ~
2/4∆

〈α|∆q̂∆p̂ + ∆p̂∆q̂|α〉 = 0

That is, a coherent state is a minimum uncertainty state.

A large value for α suggests a semiclassical state.
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Oscillator coherent states.

Because a is not an Hermitian operator, the coherent states are
not orthogonal.

|〈α|α′〉|2 = exp(−|α− α′|2).

If α and α′ are very different (as they would be if they represent
two macroscopically distinct states) then the two coherent states
are very nearly orthogonal.

A useful identity
∫

d2α|α〉〈α| = π1̂.

Show this using the expansion in terms |n〉. The result

n! =
∫ ∞
0

dxxne−x may be useful.
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Oscillator coherent states.

Dynamics.

Use the expansion of |α〉 over the energy eigenstates to show

that an initial coherent state evolves in time as

|α〉 → |αe−iωt〉
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The Husimi function

Given an arbitrary state of a mechanical system, |ψ〉, define

Q(α,α) = |〈α|ψ〉|2

This is the average value of the projection operator

Π(α) = |α〉〈α|

As
∫

d2α|α〉〈α| = π · 1̂

we have that
1

π

∫

d2αQ(α,α) = 1

As Q(α,α) is clearly positive and normalised, it has an
interpretation as a probability density on phase space, q, p, where

q = 2
√

∆ Re[α], p =
√

~/∆ Im[α]
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The Husimi function

Examples:

SHO energy eigenstate, |n〉

Qn(α,α) =
|α|2n
n!

e−|α|2
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The Husimi function

Examples:

A coherent state , |α0〉

Qα0
(α,α) = e−|α−α0|2
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