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Classical dynamics.

Classical dynamics:

Definition.
A classical state, P(q1, q2, . . . , qn, p1, p2, . . . , pn) is
positive, real valued, integrable function ( with norm one
in L1 ) on an even dimensional sympletic manifold, the
phase space.

The normalisation is
∫ ∞

−∞

dqndpnP(qi , pi ) = 1



States, physical quantities, instruments and operationss.

A more general class of functions to represent states,

Definition.
A completely specified state is a pure state and is given
by

P(q, p|q0, p0) = δ(2n)(q − q0, p − p0)

A pure state corresponds to a single point in phase space. A
completely specified state means that we know everything there is
to know about the state.



States, physical quantities, instruments and operationss.

Physical quantities.

Definition.
A physical quantity is a real valued function A(q, p) on
the symplectic manifold (ie one with a Poisson bracket).

Examples:

• kinetic energy T = p2/(2m)

• potential energy V (q)

• total energy (Hamiltonian) H = T + V

• angular momentum ~L = ~q × ~p



States, physical quantities, instruments and operationss.

Definition.
The moments of a physical quantity A in the state P is
given by

〈A〉P =

∫ ∞

−∞

dqdpA(q, p)P(q, p)

Technical note: the moment defined by a state P is a bounded
positive linear functional on the space L∞ of physical quantities.
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Classical dynamics.

Two pictures for dynamics.

Physical quantities change in time, with states independent of
time. This is the Hamilton picture.

States change in time, with physical quantities independent of
time. This is the Liouville picture. Both pictures give the same
results for moments of physical quantities.

In the Hamilton picture, the evolution of physical quantities is
given by Hamilton’s equations,

dA

dt
= −{H,A} +

∂A

∂t

The { , } is the usual Poisson bracket.



Classical dynamics.

In the Liouville picture, evolution equation for P(q, p, t). The total
time derivative of a phase space function of the form F (q, p, t)is,

dF

dt
=

dq

dt

∂F

∂q
+

dp

dt

∂F

∂p
+
∂F

∂t

= {F ,H} +
∂F

∂t

dynamics of the density P(q, p, t) is like the flow of an
incompressible fluid, so dP

dt
= 0.

∂P

∂t
= {H,P}

This is Liouville’s equation.
Show that the evolution of moments of physical quantities
are the same in both pictures.



Quantum dynamics.

Like classical mechanics, there are two ways to think of the
dynamics:

• States change in time Schrödinger picture.

• physical quantities change in time Heisenberg picture

Both pictures give the same result for averages, 〈Â(t)〉.



Schrödinger picture.

〈q̂(t)〉 = 〈ψ(t)q̂|ψ(t)〉 (1)

=

∫

dx ψ∗(x , t)xψ(x , t) (2)

where
|ψ(t)〉 =

∑

n

cn|En〉e−iEnt/~

where
Ĥ|En〉 = En|En〉

We can also write

|ψ(t)〉 = e−i Ĥt/~
∑

n

cn|En〉 = e−i Ĥt/~|ψ(0)〉



Schrödinger picture.

Then the time dependent average is

〈ψ(t)|q̂|ψ(t)〉 = 〈ψ(0)|e i Ĥ t/~q̂e−i Ĥt/~|ψ(0)〉

Define the unitary operator (UU† = 1)

U(t) = e−i Ĥt/~

〈ψ(t)|q̂|ψ(t)〉 = 〈ψ(0)|U†(t)q̂U(t)|ψ(0)〉

Ĥ is a hermitian operator, Ĥ† = Ĥ, which implies it has real eigenvalues.



Heisenberg picture.

Define the new operators

q̂(t) = U†(t)q̂U(t)

p̂(t) = U†(t)p̂U(t)

prove that this does not change the commutation relations:

[q̂(t), p̂(t)] = i~

We then say that transformation is canonical.



Heisenberg picture.

The we can write,

〈ψ(t)|q̂|ψ(t)〉 = 〈ψ(0)|q̂(t)|ψ(0)〉

where

dq̂

dt
=

(

d

dt
U†(t)

)

q̂U(t) + U(t)†q̂

(

d

dt
U(t)

)

=
i

~
Ĥq̂ − i

~
Ĥq̂

= − i

~
[q̂, Ĥ ]

using the definition of the commutator [· , ·].

cf classical q̇ = {q,H(q, p)}, in terms of Poisson bracket



Heisenberg picture.

Example: SHO

Ĥ =
p̂2

2m
+

mω2

2
q̂2

dq̂

dt
= − −i

2m~
[q̂, p̂2] =

p̂

m

where we use the identity [A,BC ] = [A,B ]C + B [A,C ] and
[q̂, p̂] = i~.

Likewise
dp̂

dt
= −mω2q̂

Show that the solutions are the same form as the classical
solutions



Particle in a periodic potential.

V (x) = −V0 cos(2πx/λ)

H =
p2
x

2m
− V0 cos(2πx/λ)
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Particle in a periodic potential.

Phase space orbits.
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Particle in a periodic potential.

Dimensionles variables:

q = 2πx/λ

p = p2
x/µ

The commutation relations are

[q̂, p̂] = ik

where dimensionless Planck

k =
2π~

λµ

Scale energy H → mH/µ2, define dimensionless Hamiltonian,

Ĥ =
p̂2

2
− κ cos q̂

where κ = mV0/µ
2



Particle in a periodic potential.

Quantisation (for bounded motion), with energy E

Only allowed orbits that enclose an area= n × 2π × k (with
n = 1, 2, . . .).

The classical action variable is

J(E ) = area/2π

so
J(En) = nk



Particle in a periodic potential.

Classical action

J =
√
κ

8

π

{

E(N) − (1 − N2)K(N), N < 1 bounded motion
1

2N E(N−1), N > 1 un-bounded motion,

Here 2N2 = 1 + E/κ,

E and K are the complete elliptic integrals of the first and second
kind and F is the incomplete integral of the first kind.



Particle in a periodic potential.

for allowed energies,

J(En) − J(En−1) = k

and

J(En) − J(En−1) =≈ dJ(E )

dE

∣

∣

∣

∣

En

.∆En

where ∆En = En − En−1.

Now use
dJ(E )

dE
= ωcl (E )

thus
∆En = kωcl(E )



Particle in a periodic potential.

Phase space orbits.
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Particle in a periodic potential.

Dynamics of a classical distribution Q(q, p):

∂Q

∂t
= −{H,Q}q,p = −p

∂Q

∂q
+ κ sin q

∂Q

∂p
,

solved by the method of characteristics∗.

Q0(q, p) =
1

2π
√
σqσp

exp

[

(p − p0)
2

2σp

]

exp

[

(q − q0)
2

2σq

]

(q0, p0) = (−1.5, 0), σq = 0.18, σp = 0.33

Q(q, p, t) = Q0 [q̄(q, p,−t), p̄(q, p,−t)] ,

( q̄(q, p, t), p̄(q, p, t)) is the solution to Hamilton’s equations.

∗ R. Courant and D. Hilbert, Methods of Mathematical Physics, vol II



Particle in a periodic potential.

Dynamics of a classical distribution Q(q, p): Plot contours of Q

Figure: κ = 1.2, (a) initially the atom is localized in the region of
bounded motion; (b) After just ten classical periods the distribution of
the atom is sheered over the trajectories on which it has support.



Particle in a periodic potential.

Classical dynamics of moments of momentum:
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Figure: (a) the mean momentum, 〈p〉, rapidly collapses to zero due to
the sheering action of the nonlinear motion;(b) the momentum variance,
V (p)



Particle in a periodic potential.

Quantum dynamics of moments of momentum:
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